在 Python中处理大型机器学习数据集的简单方法
itomcoil 2025-01-10 14:19 23 浏览
本文的目标受众:
- 想要对大量数据集执行 Pandas/NumPy 操作的人。
- 希望使用Python在大数据上执行机器学习任务的人。
本文将使用 .csv 格式的文件来演示 python 的各种操作,其他格式如数组、文本文件等也是如此。
为什么我们不能将 pandas 用于大型机器学习数据集呢?
我们知道 Pandas 使用计算机内存 (RAM) 来加载您的机器学习数据集,但是,如果您的计算机有8 GB 的内存 (RAM),那么为什么 pandas 仍然无法加载 2 GB 的数据集呢?原因是使用 Pandas 加载 2 GB 文件不仅需要 2 GB RAM,还需要更多内存,因为总内存需求取决于数据集的大小以及您将在该数据集上执行的操作。
以下是加载到计算机内存中的不同大小的数据集的快速比较:
此外,Pandas只使用操作系统的一个内核,这使得处理速度很慢。换句话说,我们可以说pandas不支持并行(将一个问题分解成更小的任务)。
假设电脑有 4 个内核,下图是加载 CSV 文件的时候 pandas 使用的内核数:
普遍不使用 pandas 处理大型机器学习数据集的主要原因有以下两点,一是计算机内存使用量,二是缺乏并行性。在 NumPy 和 Scikit-learn中,对于大数据集也面临同样的问题。
为了解决这两个问题,可以使用名为Dask的python库,它能够使我们在大型数据集上执行pandas、NumPy和ML等各种操作。
Dask是如何工作的?
Dask是在分区中加载你的数据集,而pandas通常是将整个机器学习数据集作为一个dataframe。在Dask中,数据集的每个分区都被认为是一个pandas dataframe。
Dask 一次加载一个分区,因此您不必担心出现内存分配错误问题。
以下是使用 dask 在计算机内存中加载不同大小的机器学习数据集的比较:
Dask 解决了并行性问题,因为它将数据拆分为多个分区,每个分区使用一个单独的内核,这使得数据集上的计算更快。
假设电脑有 4 个内核,以下是 dask 在加载 5 GB csv 文件时的方式:
要使用 dask 库,您可以使用以下命令进行安装:
pip install dask
Dask 有几个模块,如dask.array、dask.dataframe 和 dask.distributed,只有在您分别安装了相应的库(如 NumPy、pandas 和 Tornado)后才能工作。
如何使用 dask 处理大型 CSV 文件?
dask.dataframe 用于处理大型 csv 文件,首先我尝试使用 pandas 导入大小为 8 GB 的数据集。
import pandas as pd
df = pd.read_csv(“data.csv”)
它在我的 16 GB 内存笔记本电脑中引发了内存分配错误。
现在,尝试使用 dask.dataframe 导入相同的 8 GB 数据
dask 只用了一秒钟就将整个 8 GB 文件加载到 ddf 变量中。
让我们看看 ddf 变量的输出。
如您所见,执行时间为 0.5 秒,这里显示已划分为 119 个分区。
您还可以使用以下方法检查数据帧的分区数:
默认情况下,dask 将我的 8 GB CSV 文件加载到 119 个分区(每个分区大小为 64MB),这是根据可用的物理内存和电脑的内核数来完成的。
还可以在加载 CSV 文件时使用 blocksize 参数指定我自己的分区数。
现在指定了一个字符串值为 400MB 的 blocksize 参数,这使得每个分区大小为 400 MB,让我们看看有多少个分区
关键点:使用 Dask DataFrames 时,一个好的经验法则是将分区保持在 100MB 以下。
使用以下方法可调用dataframe的特定分区:
也可通过使用负索引来调用最后一个分区,就像我们在调用列表的最后一个元素时所做的那样。
让我们看看数据集的形状:
您可以使用 len() 检查数据集的行数:
Dask 已经包含了示例数据集。我将使用时间序列数据向您展示 dask 如何对数据集执行数学运算。
导入dask.datasets后,ddf_20y 加载了从 2000 年 1 月 1 日到 2021 年 12 月 31 日的时间序列数据。
让我们看看我们的时间序列数据的分区数。
20 年的时间序列数据分布在 8035 个分区中。
在 pandas 中,我们使用 head 打印数据集的前几行,dask 也是这样。
让我们计算一下 id 列的平均值。
dask不会打印dataframe的总行数,因为它使用惰性计算(直到需要时才显示输出)。为了显示输出,我们可以使用compute方法。
假设我想对数据集的每一列进行归一化(将值转换为0到1之间),Python代码如下:
循环遍历列,找到每列的最小值和最大值,并使用简单的数学公式对这些列进行归一化。
关键点:在我们的归一化示例中,不要认为会发生实际的数值计算,它只是惰性求值(在需要之前永远不会向您显示输出)。
为什么要使用 Dask 数组?
Dask 将数组分成小块,其中每个块都是一个 NumPy 数组。
dask.arrays 用于处理大数组,以下Python代码使用 dask 创建了一个 10000 x 10000 的数组并将其存储在 x 变量中。
调用该 x 变量会产生有关数组的各种信息。
查看数组的特定元素
对dask 数组进行数学运算的Python示例:
正如您所看到的,由于延迟执行,它不会向您显示输出。我们可以使用compute来显示输出:
dask 数组支持大多数 NumPy 接口,如下所示:
- 数学运算:+, *, exp, log, ...
- sum(), mean(), std(), sum(axis=0), ...
- 张量/点积/矩阵乘法:tensordot
- 重新排序/转置:transpose
- 切片:x[:100, 500:100:-2]
- 使用列表或 NumPy 数组进行索引:x[:, [10, 1, 5]]
- 线性代数:svd、qr、solve、solve_triangular、lstsq
但是,Dask Array 并没有实现完整 NumPy 接口。
你可以从他们的官方文档中了解更多关于 dask.arrays 的信息。
什么是Dask Persist?
假设您想对机器学习数据集执行一些耗时的操作,您可以将数据集持久化到内存中,从而使数学运算运行得更快。
从 dask.datasets 导入了时间序列数据
让我们取数据集的一个子集并计算该子集的总行数。
计算总行数需要 27 秒。
我们现在使用 persist 方法:
持久化我们的子集总共花了 2 分钟,现在让我们计算总行数。
同样,我们可以对持久化数据集执行其他操作以减少计算时间。
persist应用场景:
- 数据量大
- 获取数据的一个子集
- 对子集应用不同的操作
为什么选择 Dask ML?
Dask ML有助于在大型数据集上使用流行的Python机器学习库(如Scikit learn等)来应用ML(机器学习)算法。
什么时候应该使用 dask ML?
- 数据不大(或适合 RAM),但训练的机器学习模型需要大量超参数,并且调优或集成技术需要大量时间。
- 数据量很大。
正如你所看到的,随着模型大小的增加,例如,制作一个具有大量超参数的复杂模型,它会引起计算边界的问题,而如果数据大小增加,它会引起内存分配错误。因此,在这两种情况下(红色阴影区域)我们都使用 Dask 来解决这些问题。
如官方文档中所述,dask ml 库用例:
- 对于内存问题,只需使用 scikit-learn(或其他ML 库)。
- 对于大型模型,使用 dask_ml.joblib 和scikit-learn estimators。
- 对于大型数据集,使用 dask_ml estimators。
让我们看一下 Dask.distributed 的架构
Dask 让您能够在计算机集群上运行任务。在 dask.distributed 中,只要您分配任务,它就会立即开始执行。
简单地说,client就是提交任务的你,执行任务的是Worker,调度器则执行两者之间通信。
python -m pip install dask distributed –upgrade
如果您使用的是单台机器,那么就可以通过以下方式创建一个具有4个worker的dask集群
如果需要dashboard,可以安装bokeh,安装bokeh的命令如下:
pip install bokeh
就像我们从 dask.distributed 创建客户端一样,我们也可以从 dask.distributed 创建调度程序。
要使用 dask ML 库,您必须使用以下命令安装它:
pip install dask-ml
我们将使用 Scikit-learn 库来演示 dask-ml 。
假设我们使用 Grid_Search 方法,我们通常使用如下Python代码
使用 dask.distributed 创建一个集群:
要使用集群拟合 scikit-learn 模型,我们只需要使用 joblib
- 上一篇:python中pyd文件的使用
- 下一篇:矩阵行列式简明教程
相关推荐
- python创建文件夹,轻松搞定,喝咖啡去了
-
最近经常在录视频课程,一个课程下面往往有许多小课,需要分多个文件夹来放视频、PPT和案例,这下可好了,一个一个手工创建,手酸了都做不完。别急,来段PYTHON代码,轻松搞定,喝咖啡去了!import...
- 如何编写第一个Python程序_pycharm写第一个python程序
-
一、第一个python程序[掌握]python:python解释器,将python代码解释成计算机认识的语言pycharm:IDE(集成开发环境),写代码的一个软件,集成了写代码,...
- Python文件怎么打包为exe程序?_python3.8打包成exe文件
-
PyInstaller是一个Python应用程序打包工具,它可以将Python程序打包为单个独立可执行文件。要使用PyInstaller打包Python程序,需要在命令行中使用py...
- 官方的Python环境_python环境版本
-
Python是一种解释型编程开发语言,根据Python语法编写出来的程序,需要经过Python解释器来进行执行。打开Python官网(https://www.python.org),找到下载页面,选择...
- [编程基础] Python配置文件读取库ConfigParser总结
-
PythonConfigParser教程显示了如何使用ConfigParser在Python中使用配置文件。文章目录1介绍1.1PythonConfigParser读取文件1.2Python...
- Python打包exe软件,用这个库真的很容易
-
初学Python的人会觉得开发一个exe软件非常复杂,其实不然,从.py到.exe文件的过程很简单。你甚至可以在一天之内用Python开发一个能正常运行的exe软件,因为Python有专门exe打包库...
- 2025 PyInstaller 打包说明(中文指南),python 打包成exe 都在这里
-
点赞标记,明天就能用上这几个技巧!linux运维、shell、python、网络爬虫、数据采集等定定做,请私信。。。PyInstaller打包说明(中文指南)下面按准备→基本使用→常用...
- Python自动化办公应用学习笔记40—文件路径2
-
4.特殊路径操作用户主目录·获取当前用户的主目录路径非常常用:frompathlibimportPathhome_dir=Path.home()#返回当前用户主目录的Path对象...
- Python内置tempfile模块: 生成临时文件和目录详解
-
1.引言在Python开发中,临时文件和目录的创建和管理是一个常见的需求。Python提供了内置模块tempfile,用于生成临时文件和目录。本文将详细介绍tempfile模块的使用方法、原理及相关...
- python代码实现读取文件并生成韦恩图
-
00、背景今天战略解码,有同学用韦恩图展示各个产品线的占比,效果不错。韦恩图(Venndiagram),是在集合论数学分支中,在不太严格的意义下用以表示集合的一种图解。它们用于展示在不同的事物群组之...
- Python技术解放双手,一键搞定海量文件重命名,一周工作量秒搞定
-
摘要:想象一下,周五傍晚,办公室的同事们纷纷准备享受周末,而你,面对着堆积如山的文件,需要将它们的文件名从美国日期格式改为欧洲日期格式,这似乎注定了你将与加班为伍。但别担心,Python自动化办公来...
- Python路径操作的一些基础方法_python路径文件
-
带你走进@机器人时代Discover点击上面蓝色文字,关注我们Python自动化操作文件避开不了路径操作方法,今天我们来学习一下路径操作的一些基础。Pathlib库模块提供的路径操作包括路径的...
- Python爬取下载m3u8加密视频,原来这么简单
-
1.前言爬取视频的时候发现,现在的视频都是经过加密(m3u8),不再是mp4或者avi链接直接在网页显示,都是经过加密形成ts文件分段进行播放。今天就教大家如果通过python爬取下载m3u8加密视频...
- 探秘 shutil:Python 高级文件操作的得力助手
-
在Python的标准库中,shutil模块犹如一位技艺精湛的工匠,为我们处理文件和目录提供了一系列高级操作功能。无论是文件的复制、移动、删除,还是归档与解压缩,shutil都能以简洁高效的方式完成...
- 怎么把 Python + Flet 开发的程序,打包为 exe ?这个方法很简单!
-
前面用Python+Flet开发的“我的计算器v3”,怎么打包为exe文件呢?这样才能分发给他人,直接“双击”运行使用啊!今天我给大家分享一个简单的、可用的,把Flet开发的程序打包为...
- 一周热门
- 最近发表
-
- python创建文件夹,轻松搞定,喝咖啡去了
- 如何编写第一个Python程序_pycharm写第一个python程序
- Python文件怎么打包为exe程序?_python3.8打包成exe文件
- 官方的Python环境_python环境版本
- [编程基础] Python配置文件读取库ConfigParser总结
- Python打包exe软件,用这个库真的很容易
- 2025 PyInstaller 打包说明(中文指南),python 打包成exe 都在这里
- Python自动化办公应用学习笔记40—文件路径2
- Python内置tempfile模块: 生成临时文件和目录详解
- python代码实现读取文件并生成韦恩图
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)