百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

R数据分析:结构方程模型画图以及模型比较,实例操练

itomcoil 2025-01-21 18:35 29 浏览

一篇文章写清楚一个问题,关注我,自学python!

本来打算写一个python做结构方程模型系列的,发现python并不能生成路径图,于是决定先学习R吧,毕竟我时间有限,之后还是会更新python,也会加上R,感兴趣的朋友可以关注一波。今天给大家写结构方程的模型的比较,顺带写写路径图的画法。

结构方程模型拟合指标

可用于反映模型拟合优度的指标有很多,总体上可以分为3类:绝对指数、相对指数和简约指数,为了更明晰的展示,给大家放一个表吧:


结构方程建模R语言实操

这篇文章建模部分我会写的很简单,因为上篇文章有写,有兴趣的同学移步上篇文章。

今天我们建立以下2个图所示的模型,然后比较2个模型的拟合情况,从而决定最终选择哪一个模型!



我们注意到两个模型的变量都是一样的,不同理论下有不同的关系构成,到底哪一个是正确的呢,让数据来说话吧

  • 导入数据
library(lavaan)
library(semPlot)

data=lav_matrix_lower2full(c(1.00,
                             .53,	1.00,	
                             .15,	.18,	1.00,		
                             .52,	.29,	-.05,	1.00,	
                             .30,	.34,	.23,	.09,	1.00))
colnames(data) = 
  rownames(data) = 
  c("morale", "illness", "neuro", "relationship", "SES") 

以上代码实现了R包的载入和数据的建立并命名

  • 建立模型
#model 1
model1 = 'illness ~ morale
relationship ~ morale
morale ~ SES + neuro
'

#model 2
model2 = 'SES ~ illness + neuro
morale ~ SES + illness
relationship ~ morale + neuro
'

以上代码完成了两个模型的建立,大家可以看图验证。

  • 拟合模型并画路径图
model1.fit = sem(model1, 
                 sample.cov=data, 
                 sample.nobs=469)
semPaths(model1.fit, 
         whatLabels="par", 
         layout="spring")

model2.fit = sem(model2, 
                 sample.cov=data, 
                 sample.nobs=469)
semPaths(model2.fit, 
         whatLabels="par", 
         layout="spring")

以上代码实现了2个模型的拟合以及路径图的绘制,绘出的图如下:




  • 拟合参数比较
fitmeasures(model1.fit)
fitmeasures(model2.fit)

以上代码可以得出每个模型的拟合参数,让大家瞅一瞅,输出的参数非常全:

拟合参数的比较过程

通过运行fitmeasures方法,我们可以得到各种拟合参数,如下表所示我们将常用的2个模型的拟合参数列出来以做对比(只列出了部分):

解释一下我了解到的以上的拟合指数的比较:绝对指数(如GFI,SRMR,RMSEA)衡量了所考虑的理论模型与样本数据的拟合程度! 它只基于理论模型本身不与别的模型比较,首先是卡方值越小越好,RMSEA小于0.05 表示模型拟合得好,在0.05-0.08之间表示模型基本可以接受,RMSEA也是越小越好;CFI,NFI,TLI越大越好,AIC,ECVI越小越好,所以按数据说话的话,这两个模型便是模型2更好一些。

小结

今天给大家写了R语言的结构方程建模实现以及模型比较,感谢大家耐心看完。发表这些东西的主要目的就是督促自己,希望大家关注评论指出不足,一起进步。内容我都会写的很细,用到的数据集也会在原文中给出链接,你只要按照文章中的代码自己也可以做出一样的结果,一个目的就是零基础也能懂,因为自己就是什么基础没有从零学Python的,加油。

(站外链接发不了,请关注后私信回复“数据链接”获取本头条号所有使用数据)

往期内容:

python机器学习:机器学习模型评价-交叉验证与留一验证

python数据分析:如何用python做路径分析,附数据库实例操练

相关推荐

最强聚类模型,层次聚类 !!_层次聚类的优缺点

哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...

python决策树用于分类和回归问题实际应用案例

决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...

Python教程(四十五):推荐系统-个性化推荐算法

今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...

简单学Python——NumPy库7——排序和去重

NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...

PyTorch实战:TorchVision目标检测模型微调完

PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...

C4.5算法解释_简述c4.5算法的基本思想

C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...

Python中的数据聚类及可视化分析实践

探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...

用Python来统计大乐透号码的概率分布

用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...

python:支持向量机监督学习算法用于二分类和多分类问题示例

监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...

25个例子学会Pandas Groupby 操作

groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...

数据挖掘流程_数据挖掘流程主要有哪些步骤

数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...

使用Python寻找图像最常见的颜色_python 以图找图

如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...

财务预算分析全网最佳实践:从每月分析到每天分析

原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...

常用数据工具去重方法_数据去重公式

在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...

Python教程(四十):PyTorch深度学习-动态计算图

今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...