Python图像处理:OpenCV基础教程(python图像处理工具)
itomcoil 2025-01-29 16:12 13 浏览
OpenCV(Open Source Computer Vision Library)是一个开源计算机视觉和机器学习软件库。它提供了大量的图像和视频处理功能,可以用于各种应用场景,比如人脸识别、物体检测、图像分割等。下面是一个关于如何使用 OpenCV 进行基本图像处理的教程。
安装 OpenCV
首先,你需要安装 OpenCV。如果你还没有安装,可以通过 pip 安装 OpenCV 的 Python 接口:
Bash
深色版本
1pip install opencv-python
为了能够使用一些额外的功能,比如图形用户界面,你可能还需要安装 opencv-python-headless 或者 opencv-contrib-python:
Bash
深色版本
1pip install opencv-python-headless
2pip install opencv-contrib-python
基础图像操作
读取图像
Python
深色版本
1import cv2
2
3# 读取图像
4image = cv2.imread('path/to/your/image.jpg')
5
6# 显示图像
7cv2.imshow('Image', image)
8cv2.waitKey(0) # 等待按键事件,0 表示无限等待
9cv2.destroyAllWindows()
10
11# 保存图像
12cv2.imwrite('output_image.jpg', image)
图像属性
Python
深色版本
1# 获取图像尺寸 (高度, 宽度, 通道数)
2height, width, channels = image.shape
3print(f"Image size: {width}x{height} ({channels} channels)")
4
5# 获取像素值
6pixel_value = image[100, 100] # 获取 (100, 100) 位置的像素值
7print(f"Pixel value at (100, 100): {pixel_value}")
图像裁剪与缩放
Python
深色版本
1# 裁剪图像
2cropped_image = image[50:200, 100:300]
3
4# 缩放图像
5resized_image = cv2.resize(image, (640, 480)) # 将图像调整为 640x480 大小
高级图像处理
灰度转换
Python
深色版本
1gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
2cv2.imshow('Gray Image', gray_image)
3cv2.waitKey(0)
4cv2.destroyAllWindows()
边缘检测
Python
深色版本
1edges = cv2.Canny(gray_image, threshold1=50, threshold2=150)
2cv2.imshow('Edges', edges)
3cv2.waitKey(0)
4cv2.destroyAllWindows()
形态学操作
Python
深色版本
1kernel = np.ones((5, 5), np.uint8)
2
3# 腐蚀
4erosion = cv2.erode(edges, kernel, iterations=1)
5
6# 膨胀
7dilation = cv2.dilate(edges, kernel, iterations=1)
8
9# 开运算
10opening = cv2.morphologyEx(edges, cv2.MORPH_OPEN, kernel)
11
12# 闭运算
13closing = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)
图像轮廓检测
Python
深色版本
1# 查找轮廓
2contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
3
4# 绘制轮廓
5cv2.drawContours(image, contours, -1, (0, 255, 0), 2)
6cv2.imshow('Contours', image)
7cv2.waitKey(0)
8cv2.destroyAllWindows()
完整示例
将上述代码片段组合成一个完整的程序:
Python
深色版本
1import cv2
2import numpy as np
3
4# 读取图像
5image = cv2.imread('path/to/your/image.jpg')
6
7# 显示原始图像
8cv2.imshow('Original Image', image)
9
10# 转换为灰度图像
11gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
12cv2.imshow('Gray Image', gray_image)
13
14# 边缘检测
15edges = cv2.Canny(gray_image, threshold1=50, threshold2=150)
16cv2.imshow('Edges', edges)
17
18# 形态学操作
19kernel = np.ones((5, 5), np.uint8)
20opening = cv2.morphologyEx(edges, cv2.MORPH_OPEN, kernel)
21cv2.imshow('Opening', opening)
22
23# 轮廓检测
24contours, _ = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
25cv2.drawContours(image, contours, -1, (0, 255, 0), 2)
26cv2.imshow('Contours', image)
27
28cv2.waitKey(0)
29cv2.destroyAllWindows()
注意事项
- 在显示图像时,确保你的程序在适当的位置调用了 cv2.waitKey() 和 cv2.destroyAllWindows(),这样可以正确地管理窗口。
- OpenCV 使用 BGR 色彩空间而不是 RGB。
- 使用适当的阈值和参数来适应不同的图像和需求。
这些基本操作是使用 OpenCV 进行图像处理的良好起点。你可以在此基础上探索更多高级功能,例如特征检测、模板匹配、颜色空间转换等。
相关推荐
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
-
在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...
- Connect 2.0来了,还有Nuke和Maya新集成
-
ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
-
什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...
- Python入坑系列:桌面GUI开发之Pyside6
-
阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
-
通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...
- pyside2的基础界面(pyside2显示图片)
-
今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...
- Python GUI开发:打包PySide2应用(python 打包pyc)
-
之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
-
PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
-
之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
-
Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...
- Python操作系统资源管理与监控(python调用资源管理器)
-
在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...
- 本地部署开源版Manus+DeepSeek创建自己的AI智能体
-
1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...
- 一文教会你,搭建AI模型训练与微调环境,包学会的!
-
一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...
- 使用scikit-learn为PyTorch 模型进行超参数网格搜索
-
scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...
- 如何Keras自动编码器给极端罕见事件分类
-
全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...
- 一周热门
- 最近发表
-
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
- Connect 2.0来了,还有Nuke和Maya新集成
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
- Python入坑系列:桌面GUI开发之Pyside6
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
- pyside2的基础界面(pyside2显示图片)
- Python GUI开发:打包PySide2应用(python 打包pyc)
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)