OpenCV-Python从入门到实战,学完变大神!
itomcoil 2025-01-29 16:13 15 浏览
目录(关注博主,持续分享编程干货!)
I 走进 OpenCV 10
1 关于 OpenCV-Python 教程 10
2 在 Windows 上安装 OpenCV-Python 11
3 在 Fedora 上安装 OpenCV-Python 12
II OpenCV 中的 Gui 特性 13
4 图片 13
4.1 读入图像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 显示图像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 保存图像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 总结一下 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 视频 18
5.1 用摄像头捕获视频 . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 从文件中播放视频 . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 保存视频 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 OpenCV 中的绘图函数 24
6.1 画线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 画矩形 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 画圆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 画椭圆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.5 画多边形 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.6 在图片上添加文字 . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 把鼠标当画笔 28
7.1 简单演示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.2 高级一点的示例 . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8 用滑动条做调色板 32
8.1 代码示例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
III 核心操作 36
——————————————————————————
48.2.2仅有一个特征的数据 . . . . . . . . . . . . . . . . . . . . 282
48.2.3颜色量化 . . . . . . . . . . . . . . . . . . . . . . . . . . 286
IX 计算摄影学 288
49图像去噪 288
49.1OpenCV 中的图像去噪 . . . . . . . . . . . . . . . . . . . . . . 289
49.1.1cv2.fastNlMeansDenoisingColored() . . . . . . . . 290
49.1.2cv2.fastNlMeansDenoisingMulti() . . . . . . . . . . 290
50图像修补 294
50.1基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
50.2代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
X 对象检测 297
51使用 Haar 分类器进行面部检测 297
51.1基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
51.2OpenCV 中的 Haar 级联检测 . . . . . . . . . . . . . . . . . . 299
部分 I
走进 OpenCV
1 关于 OpenCV-Python 教程
2 在 Windows 上安装 OpenCV-Python
3 在 Fedora 上安装 OpenCV-Python
部分 II
OpenCV 中的 Gui 特性
目标
o 在这里你将学会怎样读入一幅图像,怎样显示一幅图像,以及如何保存一幅图像
o 你将要学习如下函数:cv2.imread(),cv2.imshow(),cv2.imwrite()
o 如果你愿意的话,我会叫你如何使用 Matplotlib 显示一幅图片
4.1 读入图像
使用函数 cv2.imread() 读入图像。这幅图像应该在此程序的工作路径,或者给函数提供完整路径,第二个参数是要告诉函数应该如何读取这幅图片。
o cv2.IMREAD_COLOR:读入一副彩色图像。图像的透明度会被忽略,这是默认参数。
o cv2.IMREAD_GRAYSCALE:以灰度模式读入图像
cv2.IMREAD_UNCHANGED:读入一幅图像,并且包括图像的 alpha 通道
1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Dec 31 19:16:05 2013
4
5 @author: duan
6 """
7
8 import numpy as np
9 import cv2
10
11 # Load an color image in grayscale
12 img = cv2.imread('messi5.jpg',0)
警告:就算图像的路径是错的,OpenCV 也不会提醒你的,但是当你使用命令print img时得到的结果是None。
4.2 显示图像
使用函数 cv2.imshow() 显示图像。窗口会自动调整为图像大小。第一个参数是窗口的名字,其次才是我们的图像。你可以创建多个窗口,只要你喜欢,但是必须给他们不同的名字
1 cv2.imshow('image',img)
2 cv2.waitKey(0)
3 cv2.destroyAllWindows()
窗口屏幕截图将会像以下的样子 (in Fedora-Gnome machine):
cv2.waitKey() 是一个键盘绑定函数。需要指出的是它的时间尺度是毫秒级。函数等待特定的几毫秒,看是否有键盘输入。特定的几毫秒之内,如果按下任意键,这个函数会返回按键的 ASCII 码值,程序将会继续运行。如果没有键盘输入,返回值为 -1,如果我们设置这个函数的参数为 0,那它将会无限期的等待键盘输入。它也可以被用来检测特定键是否被按下,例如按键 a 是否被按下,这个后面我们会接着讨论。
cv2.destroyAllWindows() 可以轻易删除任何我们建立的窗口。如果你想删除特定的窗口可以使用 cv2.destroyWindow(),在括号内输入你想删除的窗口名。
建 议:一 种 特 殊 的 情 况 是, 你 也 可 以 先 创 建 一 个 窗 口, 之 后再 加 载 图 像。 这 种 情 况 下, 你 可 以 决 定 窗 口 是 否 可 以 调 整大 小。 使 用 到 的 函 数 是 cv2.namedWindow()。 初 始 设 定 函 数标 签 是 cv2.WINDOW_AUTOSIZE。 但 是 如 果 你 把 标 签 改 成cv2.WINDOW_NORMAL,你就可以调整窗口大小了。当图像维度太大,或者要添加轨迹条时,调整窗口大小将会很有用
代码如下:
1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 1 20:49:33 2014
4
5 @author: duan
6 """
7 import numpy as np
8 import cv2
9
10 cv2.namedWindow('image', cv2.WINDOW_NORMAL)
11 cv2.imshow('image',img)
12 cv2.waitKey(0)
13 cv2.destroyAllWindows()
4.3 保存图像
使用函数 cv2.imwrite() 来保存一个图像。首先需要一个文件名,之后才是你要保存的图像。
1 cv2.imwrite('messigray.png',img)
4.4 总结一下
下面的程序将会加载一个灰度图,显示图片,按下’s’键保存后退出,或者按下 ESC 键退出不保存。
1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 1 20:49:33 2014
4
5 @author: duan
6 """
7 import numpy as np
8 import cv2
9
10 img = cv2.imread('messi5.jpg',0)
11 cv2.imshow('image',img)
12 k = cv2.waitKey(0)
13 if k == 27: # wait for ESC key to exit
14 cv2.destroyAllWindows()
15 elif k == ord('s'): # wait for 's' key to save and exit
16 cv2.imwrite('messigray.png',img)
17 cv2.destroyAllWindows()
警告:如果你用的是 64 位系统,你需要将 k = cv2.waitKey(0) 这行改成k = cv2.waitKey(0)&0xFF。
使用 Matplotlib
Matplotib 是 python 的一个绘图库,里头有各种各样的绘图方法。之后会陆续了解到。现在,你可以学习怎样用 Matplotib 显示图像。你可以放大图像,保存它等等。
1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jan 1 20:49:33 2014
4
5 @author: duan
6 """
7 import numpy as np
8 import cv2
9 from matplotlib import pyplot as plt
10
11 img = cv2.imread('messi5.jpg',0)
12 plt.imshow(img, cmap = 'gray', interpolation = 'bicubic')
13 plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
14 plt.show()
窗口截屏如下:
参见:Matplotib 有多种绘图选择。具体可以参见 Matplotib docs。我们也会陆续了解一些
注意:彩色图像使用 OpenCV 加载时是 BGR 模式。但是 Matplotib 是 RGB模式。所以彩色图像如果已经被 OpenCV 读取,那它将不会被 Matplotib 正确显示。具体细节请看练习
练习:
1. 当你用 OpenCV 加载一个彩色图像,并用 Matplotib 显示它时会遇到一些困难。请阅读this discussion并且尝试理解它。
5 视频
目标
o 学会读取视频文件,显示视频,保存视频文件
o 学会从摄像头获取并显示视频
o 你将会学习到这些函数:cv2.VideoCapture(),cv2.VideoWrite()
5.1 用摄像头捕获视频
我们经常需要使用摄像头捕获实时图像。OpenCV 为这中应用提供了一个非常简单的接口。让我们使用摄像头来捕获一段视频,并把它转换成灰度视频显示出来。从这个简单的任务开始吧。为了获取视频,你应该创建一个 VideoCapture 对象。他的参数可以是设备的索引号,或者是一个视频文件。设备索引号就是在指定要使用的摄像头。一般的笔记本电脑都有内置摄像头。所以参数就是 0。你可以通过设置成 1 或者其他的来选择别的摄像头。之后,你就可以一帧一帧的捕获视频了。但是最后,别忘了停止捕获视频。
1 # -*- coding: utf-8 -*-
2 """
3 Created on Fri Jan 3 21:06:22 2014
4
5 @author: duan
6 """
7
8 import numpy as np
9 import cv2
10
11 cap = cv2.VideoCapture(0)
12
13 while(True):
14 # Capture frame-by-frame
15 ret, frame = cap.read()
16
17 # Our operations on the frame come here
18 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
19
20 # Display the resulting frame
21 cv2.imshow('frame',gray)
22 if cv2.waitKey(1) & 0xFF == ord('q'):
23 break
24
25 # When everything done, release the capture
26 cap.release()
27 cv2.destroyAllWindows()
cap.read() 返回一个布尔值(True/False)。如果帧读取的是正确的,就是 True。所以最后你可以通过检查他的返回值来查看视频文件是否已经到了结尾。
有时 cap 可能不能成功的初始化摄像头设备。这种情况下上面的代码会报错。你可以使用 ap.isOpened(),来检查是否成功初始化了。如果返回值是True,那就没有问题。否则就要使用函数 cap.open()。
你可以使用函数 cap.get(propId) 来获得视频的一些参数信息。这里propId 可以是 0 到 18 之间的任何整数。每一个数代表视频的一个属性,见下表
其中的一些值可以使用 cap.set(propId,value) 来修改,value 就是你想要设置成的新值。
例如,我可以使用 cap.get(3) 和 cap.get(4) 来查看每一帧的宽和高。默认情况下得到的值是 640X480。但是我可以使用 ret=cap.set(3,320)和 ret=cap.set(4,240) 来把宽和高改成 320X240。
注意:当你的程序报错时,你首先应该检查的是你的摄像头是否能够在其他程序中正常工作(比如 linux 下的 Cheese)。
5.2 从文件中播放视频
与从摄像头中捕获一样,你只需要把设备索引号改成视频文件的名字。在播放每一帧时,使用 cv2.waiKey() 设置适当的持续时间。如果设置的太低视频就会播放的非常快,如果设置的太高就会播放的很慢(你可以使用这种方法控制视频的播放速度)。通常情况下 25 毫秒就可以了。
o CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
o CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
o CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 - start of the film, 1 - end of the film.
o CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
o CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
o CV_CAP_PROP_FPS Frame rate.
o CV_CAP_PROP_FOURCC 4-character code of codec.
o CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
o CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
o CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
o CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
o CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
o CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
o CV_CAP_PROP_HUE Hue of the image (only for cameras).
o CV_CAP_PROP_GAIN Gain of the image (only for cameras).
o CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
o CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
o CV_CAP_PROP_WHITE_BALANCE Currently unsupported
o CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
注意:你应该确保你已经装了合适版本的 ffmpeg 或者 gstreamer。如果你装错了那就比较头疼了。
5.3 保存视频
在我们捕获视频,并对每一帧都进行加工之后我们想要保存这个视频。对于图片来时很简单只需要使用 cv2.imwrite()。但对于视频来说就要多做点工作。
这次我们要创建一个 VideoWriter 的对象。我们应该确定一个输出文件的名字。接下来指定 FourCC 编码(下面会介绍)。播放频率和帧的大小也都需要确定。最后一个是 isColor 标签。如果是 True,每一帧就是彩色图,否则就是灰度图。
FourCC 就是一个 4 字节码,用来确定视频的编码格式。可用的编码列表可以从fourcc.org查到。这是平台依赖的。下面这些编码器对我来说是有用个。
o In Fedora: DIVX, XVID, MJPG, X264, WMV1, WMV2. (XVID is
more preferable. MJPG results in high size video. X264 gives
very small size video)
o In Windows: DIVX (More to be tested and added)
o In OSX : (I don’t have access to OSX. Can some one fill this?)
FourCC 码以下面的格式传给程序,以 MJPG 为例:
cv2.cv.FOURCC('M','J','P','G') 或者 cv2.cv.FOURCC(*'MJPG')。
下面的代码是从摄像头中捕获视频,沿水平方向旋转每一帧并保存它。
1 # -*- coding: utf-8 -*-
2 """
3 Created on Fri Jan 3 21:06:22 2014
4
5 @author: duan
6 """
7
8 import numpy as np
9 import cv2
10
11 cap = cv2.VideoCapture(0)
12
13 # Define the codec and create VideoWriter object
14 fourcc = cv2.cv.FOURCC(*'XVID')
15 out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
16
17 while(cap.isOpened()):
18 ret, frame = cap.read()
19 if ret==True:
20 frame = cv2.flip(frame,0)
21
22 # write the flipped frame
23 out.write(frame)
24
25 cv2.imshow('frame',frame)
26 if cv2.waitKey(1) & 0xFF == ord('q'):
27 break
28 else:
29 break
30
31 # Release everything if job is finished
32 cap.release()
33 out.release()
34 cv2.destroyAllWindows()
相关推荐
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
-
在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...
- Connect 2.0来了,还有Nuke和Maya新集成
-
ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
-
什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...
- Python入坑系列:桌面GUI开发之Pyside6
-
阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
-
通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...
- pyside2的基础界面(pyside2显示图片)
-
今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...
- Python GUI开发:打包PySide2应用(python 打包pyc)
-
之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
-
PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
-
之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
-
Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...
- Python操作系统资源管理与监控(python调用资源管理器)
-
在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...
- 本地部署开源版Manus+DeepSeek创建自己的AI智能体
-
1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...
- 一文教会你,搭建AI模型训练与微调环境,包学会的!
-
一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...
- 使用scikit-learn为PyTorch 模型进行超参数网格搜索
-
scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...
- 如何Keras自动编码器给极端罕见事件分类
-
全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...
- 一周热门
- 最近发表
-
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
- Connect 2.0来了,还有Nuke和Maya新集成
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
- Python入坑系列:桌面GUI开发之Pyside6
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
- pyside2的基础界面(pyside2显示图片)
- Python GUI开发:打包PySide2应用(python 打包pyc)
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)