百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

python opencv gpu加速 cuda编译问题和设置

itomcoil 2025-01-29 16:13 24 浏览


问题1.找不到BUILD_opencv_python3

当用vs2022 编译opencv4.10时,cmake里面找不到BUILD_opencv_python3这个选项,后来换成vs2019后就出现了,这个编译的麻烦就在于各个库和工具之间的版本匹配。


问题2:nvcuvid功能选择了的话,需要下载Video_Codec_SDK,并把文件复制到CUDA对应的目录

Video_Codec_SDK下载地址:https://developer.nvidia.com/video-codec-sdk-archive


以下是一些设置参考

文件路径信息



python相关目录的设置,可以是anaconda中的虚拟环境,位置对应即可

CUDA_ARCH_BIN算力设置中把小于自己显卡算力的数字删除

显卡算力官方查询地址:https://developer.nvidia.com/cuda-gpus

CUDA相关选择



contrib功能设置OPENCV_EXTRA_MODULES_PATH设置对应路径

OPENCV_ENABLE_NONFREE选择ON

BUILD_opencv_world:如果选择会只生成一个dll文件,比较好引用 ,使用功能上不影响,但有时选择后可能会有莫名错误


CMAKE_CONFIGURATION_TYPES后面如果用命令行编译可设置成Release,vs2019中编译是可以切换Debug或release的

可以不用选择的一些功能参考:test,java,js


如果Configure和Generate都没有问题,就可以开始编译

编译方法1:命令行编译

cmake --build "G:/PthonCuda/build2" --target INSTALL --config Release

估计得几个小时,看电脑性能,编译如果完成了并没有错误,就可以在命令窗口测试成功与否

或者在pycharm中测试


以下目录会生成相应文件

install目录如果移动,改一下第四行代码即可

import os

BINARIES_PATHS = [
    os.path.join('G:/PthonCuda/build2/install', 'x64/vc16/bin'),
    os.path.join(os.getenv('CUDA_PATH', 'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.4'), 'bin')
] + BINARIES_PATHS

编译方法2:vs2019编译

模式选择Releasex64(根据需要)生成,完成之后没有报错,再右键INSTALL点生成

生成INSTALL后,D:\anaconda32024\envs\t39\Lib\site-packages\cv2目录下面会有文件产生

这虽然是为了python opencv编译,其实c++中也可以使用的,因为网上很少有python版本的opencv gpu加速代码,以下用c++代码测试下



如果有python版本的代码可留言分享下


使用方面遇到的错误

读取视频时出错 You should explicitly call download method for cuda::GpuMat object in function 'cv::_InputArray::getMat_'

尝试以下方法读取视频

import cv2

# 检查是否成功安装了CUDA支持的OpenCV
if not cv2.cuda.getCudaEnabledDeviceCount():
    raise Exception("CUDA-enabled GPU not found or CUDA support is not available in your OpenCV build.")

# 打开视频文件
video_path = "your video.mp4"  # 替换为你的视频文件路径
cap = cv2.VideoCapture(video_path)

if not cap.isOpened():
    print("Error: Could not open video.")
    exit()

# 获取视频的宽度、高度和总帧数
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

while True:
    ret, frame = cap.read()

    if not ret:
        break

    # 上传帧到GPU并直接显示
    gpu_frame = cv2.cuda_GpuMat()
    gpu_frame.upload(frame)

    # 将帧下载回CPU内存并显示
    result = gpu_frame.download()
    cv2.imshow("GPU Video", result)

    # 更新进度条(可以在实际应用中实现)
    current_frame = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
    print(f"Progress: {current_frame}/{total_frames} frames")

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

本机信息

cuda和cudnn的版本组合并非唯一,值得研究


相关推荐

Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)

在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...

Connect 2.0来了,还有Nuke和Maya新集成

ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...

Magicgui:不会GUI编程也能轻松构建Python GUI应用

什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...

Python入坑系列:桌面GUI开发之Pyside6

阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...

Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI

通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...

pyside2的基础界面(pyside2显示图片)

今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...

Python GUI开发:打包PySide2应用(python 打包pyc)

之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...

使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂

PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...

pycharm中conda解释器无法配置(pycharm安装的解释器不能用)

之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...

Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建

Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...

Python操作系统资源管理与监控(python调用资源管理器)

在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...

本地部署开源版Manus+DeepSeek创建自己的AI智能体

1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...

一文教会你,搭建AI模型训练与微调环境,包学会的!

一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...

使用scikit-learn为PyTorch 模型进行超参数网格搜索

scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...