百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Python项目实战:OpenCV计算机视觉在Web端的部署

itomcoil 2025-02-06 15:16 9 浏览

0. 前言

将 OpenCV 计算机视觉项目部署在 Web 端一个有趣的话题,部署在 Web 端的优势之一是不需要安装任何应用,只需要访问地址就可以访问应用,有很多 Python Web 框架可用于部署应用程序,这些框架可以使我们专注于应用程序的核心逻辑,而不必处理低级细节(例如,协议、套接字或进程和线程管理等)。

在本文中,将使用 Flask 框架,以构建计算机视觉 Web 应用程序。

1. Python Web 框架简介

使用 Python Web 框架可以使我们专注于应用程序的核心逻辑,而不必处理低级细节)例如,协议、套接字或进程以及线程管理等),这些框架可以分为全栈和非全栈框架:

  • Django 是一个免费的、开源的全栈框架,Django 使创建 Web 应用程序变得非常容易,并且比其他框架需要更少的时间,并专注于尽可能实现自动化。
  • Flask 是非全栈框架,Flask 具有以下依赖项:

1.Werkzeug WSGI 工具包: WSGI 实用程序库

2.Jinja2:模板引擎

Django 和 Flask 均可用于部署开发计算机视觉和深度学习应用程序,但 Flask 的学习曲线更平滑,且 Flask 专注于极简主义。例如,Flask 的 Hello World 应用程序只有几行代码。因此建议将 Flask 用于较小且不太复杂的应用程序,而 Django 通常用于较大且较复杂的应用程序。在本文中,将使用 Flask 来构建计算机视觉 Web 应用程序。

2. Flask 安装与使用

2.1 Flask 安装

为了使用 Flask 构建计算机视觉 Web 应用程序,首先进行安装:

$ pip install flask

2.2 Flask 框架 Hello World 使用示例

不可避免的,作为约定俗成的规矩,首先编写 Hello World 应用程序来了解 Flask 框架:

# hello.py
from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():
    return 'Hello world!'

if __name__ == '__main__':
    app.run()

导入所需的包后,首先创建 Flask 类的实例,作为 Web 服务器网关接口 (Web Server Gateway Interface, WSGI) 应用程序。route() 装饰器用于指示对应 URL 应该触发的函数,换句话说在 Flask 中,使用 route() 装饰器将函数绑定到指定 URL。

使用以下命令启动执行 Hello World 应用程序:

$ python hello.py

启动执行后,可以在控制台中看到以下消息,表明 Web 服务器已启动:

 * Serving Flask app "hello" (lazy loading)
 * Environment: production
   WARNING: This is a development server. Do not use it in a production deployment.
   Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

此时,在浏览器中访问 http://127.0.0.1:5000/,将对服务器发送 GET 请求,该请求将返回相应的消息:

2.2 扩展 Hello World 应用程序以在网络中其他计算机访问

上一示例中,只能从本机访问我们构建的服务器,而不能从网络中的其他计算机访问。为了使服务器公开可用,运行服务器应用程序时应添加参数 host=0.0.0.0:

# hello_ex.py
from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():
    return 'Hello world!'

if __name__ == '__main__':
    app.run(host='0.0.0.0')

这样,就可以从连接到该网络的其他设备执行请求,如下图所示,处于同一网络下的移动设备也可以访问我们的服务器了:

2.2 扩展 Hello World 应用程序以绑定其它 URL

可以使用 route() 装饰器将函数绑定到 URL,接下来,我们就扩展 Hello World 应用程序以绑定其它 URL:

# hello_ex_route.py
from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():
    return 'Hello world!'

@app.route('/user')
def hello_user():
    return 'Hello user!'

if __name__ == '__main__':
    app.run(host='0.0.0.0')

在下图中,我们可以看到移动端请求同一网络下服务器 URL
http://10.140.12.255:5000/user 并返回结果 Hello user! 信息:

我们已经介绍了使用 Flask 创建应用程序时的基本概念,接下来,我们就来探究如何使用 OpenCV 和 Flask 创建 Web 计算机视觉应用程序。

3. 使用 OpenCV 和 Flask 构建 Web 计算机视觉应用程序

接下来,我们将使用 OpenCV 和 Flask 创建 Web 计算机视觉应用程序。我们使用 OpenCV 和 Flask 的构建简单的计算机视觉中的 Hello world 应用程序。

3.1 Web 计算机视觉应用示例——图像卡通化

编写程序
opencv_flask_hello_world.py 介绍结合 OpenCV 执行基本的 Web 计算机视觉应用程序:

# opencv_flask_hello_world.py
import cv2
import numpy as np
from flask import Flask, request, make_response
import urllib.request

app = Flask(__name__)

@app.route('/cartoon', methods=['GET'])
def cartoon_processing():
    # 读取图像
    with urllib.request.urlopen(request.args.get('url')) as url:
        image_array = np.asarray(bytearray(url.read()), dtype=np.uint8)
    
    # 将图像转换为 OpenCV 格式
    img_opencv = cv2.imdecode(image_array, -1)

    # 图像卡通化
    sketch_gray, sketch_color = cv2.pencilSketch(img_opencv, sigma_s=20, sigma_r=0.1, shade_factor=0.1)
    stylizated_image = cv2.stylization(img_opencv, sigma_s=60, sigma_r=0.07)

    # 压缩图像并将其存储在内存缓冲区中
    retval, buffer = cv2.imencode('.jpg', stylizated_image)

    # 构建页面响应
    response = make_response(buffer.tobytes())
    response.headers['Content-Type'] = 'image/jpeg'

    return response

if __name__ == '__main__':
    app.run(host='0.0.0.0')

接下来,我们通过分解以上步骤进行详细解释:

第一步是导入需要的包,上例中使用了 route() 装饰器将 cartoon_processing() 函数绑定到 /cartoon URL;此外,还需要 url 参数才能正确执行 GET 请求,为了获取这个参数,需要使用 request.args.get() 函数,最后还需要使用 make_response() 函数构造响应信息;

然后需要读取传递到此 URL 的图像,将其转换为数组:

    with urllib.request.urlopen(request.args.get('url')) as url:
        image_array = np.asarray(bytearray(url.read()), dtype=np.uint8)

接下来将图像转换为 OpenCV 格式,并进行卡通化处理(关于图像卡通化更详细的介绍可以参考《OpenCV实现图像卡通化》):

    # 将图像转换为 OpenCV 格式
    img_opencv = cv2.imdecode(image_array, -1)
    # 图像卡通化
    sketch_gray, sketch_color = cv2.pencilSketch(img_opencv, sigma_s=20, sigma_r=0.1, shade_factor=0.1)
    stylizated_image = cv2.stylization(img_opencv, sigma_s=60, sigma_r=0.07)

然后对图像进行压缩并存入内存缓冲区:

    # 压缩图像并将其存储在内存缓冲区中
    retval, buffer = cv2.imencode('.jpg', stylizated_image)

最后一步是构建并返回响应给客户端:

    # 构建页面响应
    response = make_response(buffer.tobytes())
    response.headers['Content-Type'] = 'image/jpeg'

    return response

接下来运行此脚本:

$ python opencv_flask_hello_world.py

服务器运行后,我们就可以从客户端执行 GET 请求,我们将获得处理后的图像,如下图所示:

如上图所示,我们调用了以下 GET 请求:

# 这里的 10.140.12.255 是我的局域网 ip,需要根据自己的 ip 修改
http://10.140.12.255:5000/cartoon?url=https://imgs.mmkk.me/wmnv/img/20190625070725-5d11c82dd1cfd.jpg

其中,参数 url 的值
https://imgs.mmkk.me/wmnv/img/20190625070725-5d11c82dd1cfd.jpg 是我们想要 Web 计算视觉应用程序处理的图像,因此可以通过修改 url 参数值来处理不同图像:

3.2 Web 计算机视觉应用示例——增强现实

接下来,我们结合增强现实相关知识,构建另一个计算机视觉应用示例:

import cv2
import numpy as np
from flask import Flask, request, make_response
import urllib.request

app = Flask(__name__)

@app.route('/ar', methods=['GET'])
def ar_processing():
    # 加载级联检测器
    face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
    eyepair_cascade = cv2.CascadeClassifier("haarcascade_mcs_eyepair_big.xml")

    img_glasses = cv2.imread('glasses.png', -1)
    img_glasses_mask = img_glasses[:, :, 3]
    img_glasses = img_glasses[:, :, 0:3]
    with urllib.request.urlopen(request.args.get('url')) as url:
        image_array = np.asarray(bytearray(url.read()), dtype=np.uint8)
    
    # 将图像转换为 OpenCV 格式
    img_opencv = cv2.imdecode(image_array, -1)

    # 将其转换为灰度图像
    gray = cv2.cvtColor(img_opencv, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:
        roi_gray = gray[y:y + h, x:x + w]
        roi_color = img_opencv[y:y + h, x:x + w]

        # 在检测到的人脸中检测眼睛
        eyepairs = eyepair_cascade.detectMultiScale(roi_gray)

        for (ex, ey, ew, eh) in eyepairs:
            # 计算“眼睛”挂件放置的坐标
            x1 = int(ex - ew / 10)
            x2 = int((ex + ew) + ew / 10)
            y1 = int(ey)
            y2 = int(ey + eh + eh / 2)

            if x1 < 0 or x2 < 0 or x2 > w or y2 > h:
                continue

            # 计算“眼睛”挂件放置区域大小
            img_glasses_res_width = int(x2 - x1)
            img_glasses_res_height = int(y2 - y1)

            mask = cv2.resize(img_glasses_mask, (img_glasses_res_width, img_glasses_res_height))
            mask_inv = cv2.bitwise_not(mask)
            img = cv2.resize(img_glasses, (img_glasses_res_width, img_glasses_res_height))

            roi = roi_color[y1:y2, x1:x2]
            roi_bakground = cv2.bitwise_and(roi, roi, mask=mask_inv)
            roi_foreground = cv2.bitwise_and(img, img, mask=mask)

            res = cv2.add(roi_bakground, roi_foreground)
            roi_color[y1:y2, x1:x2] = res

            break

    # 压缩图像并将其存储在内存缓冲区中
    retval, buffer = cv2.imencode('.jpg', img_opencv)

    # 构建响应信息
    response = make_response(buffer.tobytes())
    response.headers['Content-Type'] = 'image/jpeg'
    return response

if __name__ == '__main__':
    app.run(host='0.0.0.0')

接下来运行此脚本:

$ python opencv_flask_hello_world_2.py

服务器运行后,我们就可以从客户端执行 GET 请求,我们将获得处理后的图像,如下图所示:

如上图所示,我们调用了以下 GET 请求:

# 这里的 10.140.12.255 是我的局域网 ip,需要根据自己的 ip 修改
http://10.140.12.255:5000/ar?url=https://imgs.mmkk.me/wmnv/img/20190625073459-5d11cea35c407.png

我们也可以通过简单修改上述脚本,应用此前学习的其他图像处理技术,构建更多有趣实用的 OpenCV 网络计算视觉应用程序。

小结

本文中,我们了解了如何使用 Python Web 框架创建 Web 应用程序,更具体地说,我们使用 OpenCV 和 Flask 开发了多个 Web 计算机视觉应用程序,我们还看到了如何执行来自浏览器的请求,以及使用 OpenCV 和 Flask 创建 Web API。

作者:盼小辉

原文链接:
https://blog.csdn.net/LOVEmy134611/article/details/123060706

相关推荐

Excel新函数TEXTSPLIT太强大了,轻松搞定数据拆分!

我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!最近我把WPS软件升级到了版本号:12.1.0.15990的最新版本,最版本已经支持文本拆分函数TEXTSPLIT了,并...

Excel超强数据拆分函数TEXTSPLIT,从入门到精通!

我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!今天跟大家分享的是Excel超强数据拆分函数TEXTSPLIT,带你从入门到精通!TEXTSPLIT函数真是太强大了,轻松...

看完就会用的C++17特性总结(c++11常用新特性)

作者:taoklin,腾讯WXG后台开发一、简单特性1.namespace嵌套C++17使我们可以更加简洁使用命名空间:2.std::variant升级版的C语言Union在C++17之前,通...

plsql字符串分割浅谈(plsql字符集设置)

工作之中遇到的小问题,在此抛出问题,并给出解决方法。一方面是为了给自己留下深刻印象,另一方面给遇到相似问题的同学一个解决思路。如若其中有写的不好或者不对的地方也请不加不吝赐教,集思广益,共同进步。遇到...

javascript如何分割字符串(javascript切割字符串)

javascript如何分割字符串在JavaScript中,您可以使用字符串的`split()`方法来将一个字符串分割成一个数组。`split()`方法接收一个参数,这个参数指定了分割字符串的方式。如...

TextSplit函数的使用方法(入门+进阶+高级共八种用法10个公式)

在Excel和WPS新增的几十个函数中,如果按实用性+功能性排名,textsplit排第二,无函数敢排第一。因为它不仅使用简单,而且解决了以前用超复杂公式才能搞定的难题。今天小编用10个公式,让你彻底...

Python字符串split()方法使用技巧

在Python中,字符串操作可谓是基础且关键的技能,而今天咱们要重点攻克的“堡垒”——split()方法,它能将看似浑然一体的字符串,按照我们的需求进行拆分,极大地便利了数据处理与文本解析工作。基本语...

go语言中字符串常用的系统函数(golang 字符串)

最近由于工作比较忙,视频有段时间没有更新了,在这里跟大家说声抱歉了,我尽快抽些时间整理下视频今天就发一篇关于go语言的基础知识吧!我这我工作中用到的一些常用函数,汇总出来分享给大家,希望对...

无规律文本拆分,这些函数你得会(没有分隔符没规律数据拆分)

今天文章来源于表格学员训练营群内答疑,混合文本拆分。其实拆分不难,只要规则明确就好办。就怕规则不清晰,或者规则太多。那真是,Oh,mygod.如上图所示进行拆分,文字表达实在是有点难,所以小熊变身灵...

Python之文本解析:字符串格式化的逆操作?

引言前面的文章中,提到了关于Python中字符串中的相关操作,更多地涉及到了字符串的格式化,有些地方也称为字符串插值操作,本质上,就是把多个字符串拼接在一起,以固定的格式呈现。关于字符串的操作,其实还...

忘记【分列】吧,TEXTSPLIT拆分文本好用100倍

函数TEXTSPLIT的作用是:按分隔符将字符串拆分为行或列。仅ExcelM365版本可用。基本应用将A2单元格内容按逗号拆分。=TEXTSPLIT(A2,",")第二参数设置为逗号...

Excel365版本新函数TEXTSPLIT,专攻文本拆分

Excel中字符串的处理,拆分和合并是比较常见的需求。合并,当前最好用的函数非TEXTJOIN不可。拆分,Office365于2022年3月更新了一个专业函数:TEXTSPLIT语法参数:【...

站长在线Python精讲使用正则表达式的split()方法分割字符串详解

欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中使用正则表达式的split()方法分割字符串详解》。使用正则表达式分割字符串在Python中使用正则表达式的split(...

Java中字符串分割的方法(java字符串切割方法)

技术背景在Java编程中,经常需要对字符串进行分割操作,例如将一个包含多个信息的字符串按照特定的分隔符拆分成多个子字符串。常见的应用场景包括解析CSV文件、处理网络请求参数等。实现步骤1.使用Str...

因为一个函数strtok踩坑,我被老工程师无情嘲笑了

在用C/C++实现字符串切割中,strtok函数经常用到,其主要作用是按照给定的字符集分隔字符串,并返回各子字符串。但是实际上,可不止有strtok(),还有strtok、strtok_s、strto...