百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

PyTorch模型训练与评估

itomcoil 2025-02-07 17:48 20 浏览

前言

一旦模型、数据集、损失函数和优化器准备完成后,我们就可以开始训练模型了。在本节中,我们将学习如何正确训练和评估深度学习模型。

模型训练与评估

我们首先编写用于批 (batch) 处理、时期 (epoch) 处理和训练模型的辅助函数。

1. 编写辅助函数计算每批数据的损失值:

python
复制代码
def loss_batch(loss_func, xb, yb,yb_h, opt=None):
    loss = loss_func(yb_h, yb)
    metric_b = metrics_batch(yb,yb_h)
    if opt is not None:
        loss.backward()
        opt.step()
        opt.zero_grad()
    return loss.item(), metric_b

2. 接下来,定义一个辅助函数来计算模型在每批数据上的准确率:

python
复制代码
def metrics_batch(target, output):
    pred = output.argmax(dim=1, keepdim=True)
    corrects=pred.eq(target.view_as(pred)).sum().item()
    return corrects

3. 接下来,定义一个辅助函数来计算数据集的损失和度量值:

python
复制代码
def loss_epoch(model,loss_func,dataset_dl,opt=None):
    loss=0.0
    metric=0.0
    len_data=len(dataset_dl.dataset)
    for xb, yb in dataset_dl:
        xb=xb.type(torch.float).to(device)
        yb=yb.to(device)
        yb_h=model(xb)
        loss_b,metric_b=loss_batch(loss_func, xb, yb,yb_h, opt)
        loss+=loss_b
        if metric_b is not None:
            metric+=metric_b
    loss/=len_data
    metric/=len_data
    return loss, metric

4. 最后,定义 train_val 函数用于评估模型性能:

python
复制代码
def train_val(epochs, model, loss_func, opt, train_dl, val_dl):
    for epoch in range(epochs):
        model.train()
        train_loss, train_metric=loss_epoch(model,loss_func,train_dl,opt)
        model.eval()
        with torch.no_grad():
            val_loss, val_metric=loss_epoch(model,loss_func,val_dl)
        accuracy=100*val_metric
        print("epoch: %d, train loss: %.6f, val loss: %.6f, accuracy: %.2f" %(epoch, train_loss,val_loss,accuracy))

5. 训练模型数个 epoch

python
复制代码
num_epochs=5
train_val(num_epochs, model, loss_func, opt, train_dl, val_dl)

训练开始后,可以看到模型训练过程中损失和性能变化:

shell
复制代码
epoch: 0, train loss: 0.22345, val loss: 0.094503, accuracy: 96.94
...
epoch: 5, train loss: 0.02345, val loss: 0.049503, accuracy: 98.02

存储和加载模型

训练完成后,我们可以将训练后的参数存储在文件中以供部署和之后加载使用,有两种常见的保存模型的方法。

首先,我们介绍第一种方法。

1. 首先,将模型参数或 state_dict 存储在文件中:

python
复制代码
path2weights="./models/weights.pt"
torch.save(model.state_dict(), path2weights)

2. 要从文件中加载模型参数,需要定义一个 Net 类的对象:

python
复制代码
_model = Net()

3. 然后,从文件中加载 state_dict

python
复制代码
weights=torch.load(path2weights)

4. 接下来,将 state_dict 设置为模型参数:

python
复制代码
_model.load_state_dict(weights)

接下来,我们继续学习第二种方法。

1. 首先,将模型存储在一个文件中:

python
复制代码
path2model="./models/model.pt"
torch.save(model,path2model)

2. 要从文件中加载模型参数,首先将定义一个 Net 类的对象:

python
复制代码
_model = Net()

3. 然后,从本地文件中加载模型:

python
复制代码
_model=torch.load(path2model)

在本小节中,我们学习了两种存储训练模型的方法。在第一种方法中,我们只存储了 state_dict 或模型参数。当我们需要训练好的模型进行部署时,我们必须创建模型的对象,然后从文件中加载参数,然后将参数设置到模型中,这种方式是 PyTorch 推荐的方法。

在第二种方法中,我们将模型存储到一个文件中,即我们将模型和 state_dict 都存储在一个文件中。当我们需要训练好的模型进行部署时,我们都需要创建一个 Net 类对象。然后,我们从文件中加载模型。因此,与第一种方法相比并没有实际的优势。

部署模型

要部署模型,我们需要使用上一小节中介绍的方法加载模型。一旦模型被加载到内存中,我们就可以将新数据传递给模型,利用模型进行预测。

1. 要将模型部署在验证数据集中的样本图像上,我们首先加载一个样本张量:

python
复制代码
n=100
x= x_val[n]
y=y_val[n]
print(x.shape)

2. 然后,对样本张量进行预处理:

python
复制代码
x= x.unsqueeze(0)
x=x.type(torch.float)
x=x.to(device)

3. 接下来,使用加载完成的神经网络模型获取预测结果:

python
复制代码
output=_model(x)
pred = output.argmax(dim=1, keepdim=True)
print (pred.item(),y.item())

相关推荐

selenium(WEB自动化工具)

定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...

开发利器丨如何使用ELK设计微服务中的日志收集方案?

【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...

高并发系统设计:应对每秒数万QPS的架构策略

当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...

2025 年每个 JavaScript 开发者都应该了解的功能

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...

JavaScript Array 对象

Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...

Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战

刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...

动力节点最新JavaScript教程(高级篇),深入学习JavaScript

JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...

一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code

当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...

「晚安·好梦」努力只能及格,拼命才能优秀

欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...

JavaScript 中 some 与 every 方法的区别是什么?

大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...

10个高效的Python爬虫框架,你用过几个?

小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...

12个高效的Python爬虫框架,你用过几个?

实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...

pip3 install pyspider报错问题解决

运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...

PySpider框架的使用

PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...

「机器学习」神经网络的激活函数、并通过python实现激活函数

神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...