百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

PyTorch模型训练与评估

itomcoil 2025-02-07 17:48 14 浏览

前言

一旦模型、数据集、损失函数和优化器准备完成后,我们就可以开始训练模型了。在本节中,我们将学习如何正确训练和评估深度学习模型。

模型训练与评估

我们首先编写用于批 (batch) 处理、时期 (epoch) 处理和训练模型的辅助函数。

1. 编写辅助函数计算每批数据的损失值:

python
复制代码
def loss_batch(loss_func, xb, yb,yb_h, opt=None):
    loss = loss_func(yb_h, yb)
    metric_b = metrics_batch(yb,yb_h)
    if opt is not None:
        loss.backward()
        opt.step()
        opt.zero_grad()
    return loss.item(), metric_b

2. 接下来,定义一个辅助函数来计算模型在每批数据上的准确率:

python
复制代码
def metrics_batch(target, output):
    pred = output.argmax(dim=1, keepdim=True)
    corrects=pred.eq(target.view_as(pred)).sum().item()
    return corrects

3. 接下来,定义一个辅助函数来计算数据集的损失和度量值:

python
复制代码
def loss_epoch(model,loss_func,dataset_dl,opt=None):
    loss=0.0
    metric=0.0
    len_data=len(dataset_dl.dataset)
    for xb, yb in dataset_dl:
        xb=xb.type(torch.float).to(device)
        yb=yb.to(device)
        yb_h=model(xb)
        loss_b,metric_b=loss_batch(loss_func, xb, yb,yb_h, opt)
        loss+=loss_b
        if metric_b is not None:
            metric+=metric_b
    loss/=len_data
    metric/=len_data
    return loss, metric

4. 最后,定义 train_val 函数用于评估模型性能:

python
复制代码
def train_val(epochs, model, loss_func, opt, train_dl, val_dl):
    for epoch in range(epochs):
        model.train()
        train_loss, train_metric=loss_epoch(model,loss_func,train_dl,opt)
        model.eval()
        with torch.no_grad():
            val_loss, val_metric=loss_epoch(model,loss_func,val_dl)
        accuracy=100*val_metric
        print("epoch: %d, train loss: %.6f, val loss: %.6f, accuracy: %.2f" %(epoch, train_loss,val_loss,accuracy))

5. 训练模型数个 epoch

python
复制代码
num_epochs=5
train_val(num_epochs, model, loss_func, opt, train_dl, val_dl)

训练开始后,可以看到模型训练过程中损失和性能变化:

shell
复制代码
epoch: 0, train loss: 0.22345, val loss: 0.094503, accuracy: 96.94
...
epoch: 5, train loss: 0.02345, val loss: 0.049503, accuracy: 98.02

存储和加载模型

训练完成后,我们可以将训练后的参数存储在文件中以供部署和之后加载使用,有两种常见的保存模型的方法。

首先,我们介绍第一种方法。

1. 首先,将模型参数或 state_dict 存储在文件中:

python
复制代码
path2weights="./models/weights.pt"
torch.save(model.state_dict(), path2weights)

2. 要从文件中加载模型参数,需要定义一个 Net 类的对象:

python
复制代码
_model = Net()

3. 然后,从文件中加载 state_dict

python
复制代码
weights=torch.load(path2weights)

4. 接下来,将 state_dict 设置为模型参数:

python
复制代码
_model.load_state_dict(weights)

接下来,我们继续学习第二种方法。

1. 首先,将模型存储在一个文件中:

python
复制代码
path2model="./models/model.pt"
torch.save(model,path2model)

2. 要从文件中加载模型参数,首先将定义一个 Net 类的对象:

python
复制代码
_model = Net()

3. 然后,从本地文件中加载模型:

python
复制代码
_model=torch.load(path2model)

在本小节中,我们学习了两种存储训练模型的方法。在第一种方法中,我们只存储了 state_dict 或模型参数。当我们需要训练好的模型进行部署时,我们必须创建模型的对象,然后从文件中加载参数,然后将参数设置到模型中,这种方式是 PyTorch 推荐的方法。

在第二种方法中,我们将模型存储到一个文件中,即我们将模型和 state_dict 都存储在一个文件中。当我们需要训练好的模型进行部署时,我们都需要创建一个 Net 类对象。然后,我们从文件中加载模型。因此,与第一种方法相比并没有实际的优势。

部署模型

要部署模型,我们需要使用上一小节中介绍的方法加载模型。一旦模型被加载到内存中,我们就可以将新数据传递给模型,利用模型进行预测。

1. 要将模型部署在验证数据集中的样本图像上,我们首先加载一个样本张量:

python
复制代码
n=100
x= x_val[n]
y=y_val[n]
print(x.shape)

2. 然后,对样本张量进行预处理:

python
复制代码
x= x.unsqueeze(0)
x=x.type(torch.float)
x=x.to(device)

3. 接下来,使用加载完成的神经网络模型获取预测结果:

python
复制代码
output=_model(x)
pred = output.argmax(dim=1, keepdim=True)
print (pred.item(),y.item())

相关推荐

Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)

在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...

Connect 2.0来了,还有Nuke和Maya新集成

ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...

Magicgui:不会GUI编程也能轻松构建Python GUI应用

什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...

Python入坑系列:桌面GUI开发之Pyside6

阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...

Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI

通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...

pyside2的基础界面(pyside2显示图片)

今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...

Python GUI开发:打包PySide2应用(python 打包pyc)

之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...

使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂

PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...

pycharm中conda解释器无法配置(pycharm安装的解释器不能用)

之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...

Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建

Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...

Python操作系统资源管理与监控(python调用资源管理器)

在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...

本地部署开源版Manus+DeepSeek创建自己的AI智能体

1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...

一文教会你,搭建AI模型训练与微调环境,包学会的!

一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...

使用scikit-learn为PyTorch 模型进行超参数网格搜索

scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...