百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

不能错过!超全Anaconda(Python整合包)导修(图文详解)

itomcoil 2025-02-15 15:55 32 浏览

全文共2653字,预计学习时长10分钟

Anaconda是一个供数据科学家、IT专家,和商业领袖使用的数据科学平台,是Python、R语言等的一个发行版。针对数据科学,它有超过300个软件包,因此它迅速攀升为最好的数据平台之一。本篇导修将会探讨如何运用Anaconda帮助Python编程。以下是本文要探讨的主题:

  • Anaconda介绍
  • 安装和启动
  • 如何将Python库导入Anaconda
  • AnacondaNavigator
  • 使用场景:

○ Python基础

○ 数据分析

○ 机器学习和人工智能

*CDH:Cloudera’s Distribution Including Apache Hadoop.

Cloudera包括Apache Hadoop的发行版本。

Anaconda介绍

Anaconda是Python和R的开源发行版本。它能够用于数据科学,机器学习,深度学习等领域。它能够让用户接触到超过300个数据库,因此对于任何程序员而言,Anaconda都是数据科学研究的上选。

Anaconda能够帮助简化软件包的管理和部署,它还匹配了多种工具,可以使用各种机器学习和人工智能算法轻松地从不同的来源收集数据。Anaconda还可以使用户获得一个易于管理的环境设置——用户只需点击按钮就可以部署任何项目。

相信你们对Anaconda已经有了一个基本概念,接下来了解如何安装它,并设置一个能够在系统上工作的环境。

安装和启动

想要安装Anaconda,可以进入这个网站。

选择一个适合的版本然后点击下载。完成下载后,打开启动页面。

遵循启动页中的指令,记得点击添加Anaconda到路径环境变量里。安装完成后,你会看到一个和下图一样的窗口:

安装完成后,打开Anaconda prompt并输入jupyternotebook*。

*Jupyter Notebook: 是一个基于Web的交互式计算环境,用于创建jupyter notebook文档。

你会看到一个和下图一样的窗口:

现在,已经知道如何将anaconda应用到python里了,继续研究如何在anaconda里为不同的项目导入数据库。

导入Python库至Anaconda

打开Anaconda prompt,检查数据库是否已经安装。

*NumPy是Python语言的一个扩展程序库,支持高端大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

因为没有名为numpy的模块存在,我们要运行以下指令来安装numpy。

安装完成,就会出现这样一个窗口:

安装完一个数据库后,尽量再次导入模块以验证安装是否成功。

如上图所示,这一步没有出现错误。这就是在Anaconda中安装不同数据库的方法。

Anaconda Navigator

Anaconda Navigator是Anaconda发行版附带的桌面图形用户界面(GUI),它能够让用户在不使用命令行的情况下启动应用程序,并管理conda软件包和环境。

Python基础

变量和数据类型是所有编程语言的基本组成部分。基于不同数据的属性,Python共有六种数据类型。其中,列表(list),字典(dictionary),集合(set),还有元组(tuple)是Python中的集合数据类型。

下面是变量和数据类型在Python中应用的例子:

#variable declaration

name = "Edureka"

f = 1991

print("python wasfounded in" , f)

#data types

a = [1,2,3,4,5,6,7]

b = {1 : 'edureka' , 2: 'python'}

c = (1,2,3,4,5)

d = {1,2,3,4,5}

print("the listis" , a)

print("thedictionary is" ,b)

print("the tupleis" , c)

print("the set is" , d)

操作符(Operators)

Python 中的操作符用于值或变量之间的操作。Python中有七种类型的操作符:

  • 赋值操作符(AssignmentOperator)。
  • 算术运算符(ArithmeticOperator)。
  • 逻辑运算符(LogicalOperator)。
  • 比较操作符(ComparisonOperator)。
  • 位操作符(Bit-wiseOperator)。
  • 会员操作符(MembershipOperator)。
  • 身份识别操作符(Identity Operator)。

下面是在Python中使用操作符的一个例子:

a = 10

b = 15

#arithmetic operator

print(a + b)

print(a - b)

print(a * b)

#assignment operator

a += 10

print(a)

#comparison operator

#a != 10

#b == a

#logical operator

a > b and a > 10

#this will return true if both the statements are true.

控制语句

诸如使用if, else, break和continue等的语句被用作控制语句,以获得对执行过程的控制,从而取得最佳结果。可以在 Python 的循环中使用这些语句来控制结果。下面的示例演示如何使用控制(control)条件(conditional)语句。

name = 'edureka'

for i in name:

if i == 'a':

break

else:

print(i)

函数

Python函数以一种高效的方式使代码的重复使用性提高,为问题语句编写逻辑,并运行一些参数以获得最佳解决方案。下面是如何在python中使用函数的示例。

deffunc(a):

return a ** a

res = func(10)

print(res)

类以及对象

因为Python支持面向对象的程序设计,所以也可以使用类和对象。下面是如何使用python中的类和对象的示例。

classParent:

deffunc(self):

print('this is parent')

classChild(Parent):

deffunc1(self):

print('this is child')

ob = new Child()

ob.func()

以上Python的一些基本概念。接下来,看看Anaconda更大的软件包支持,我们可以从许多库中获得资料。现在来探究如何使用 python anaconda进行数据分析。

分析

上面是数据分析中涉及的某些步骤。来看看在anaconda中数据分析是如何进行数据分析的,以及其中可以使用的各种库。

收集数据

数据的收集就像在程序中加载 CSV 文件一样简单。可以利用相关数据来分析数据中的特定实例或条目。下面是加载程序中CSV数据的代码:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df = pd.read_csv('filename.csv')

print(df.head(5))

交叉分析

在加载程序中的数据集之后,还需要对数据进行一些更改过滤,即消除空值和可能造成分析不确定性的不必要字段。

下面是如何根据需求筛选数据的示例:

print(df.isnull().sum())

#this will give the sum of all the null values in thedataset.

df1 = df.dropna(axis=0 , how= 'any')

#this will drop rows with null values

当然也可以删除空值。

箱线图(box plot)

sns.boxplot(x=df['Salary Range From'])

sns.boxplot(x=df['Salary Range To'])

散点图(scatter plot)

import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(16,8))

ax.scatter(df['Salary Range From'] , df['Salary Range To'])

ax.set_xlabel('Salary Range From')

ax.set_ylabel('Salary Range TO')

plt.show()

可视化

一旦根据需求改变了数据,就有必要分析这些数据,方式之一就是将结果可视化。更好的可视化表示有助于对数据投影进行最优分析。

下面是一个数据可视化的例子:

import matplotlib.pyplot as plt

fig = plt.figure(figsize = (10,10))

ax = fig.gca()

sns.heatmap(df1.corr(), annot=True, fmt=".2f")

plt.title("Correlation",fontsize=5)

plt.show()

分析

完成可视化后,可以借助各种图表来进行分析。假设我们正在处理作业数据,通过查看某个区域中特定作业的可视化表示,便可以确定特定域中作业的数量。

根据上文的分析,可以假设下列结果:

  • 和全职工作相比,数据集里兼职工作的数量非常少。
  • 兼职工作只有不到500个,但全职工作的总数超过了2500个。
  • 基于这一分析,可以建立一个预测模型。

如果还有其他问题,在评论区里踊跃发言哟,小芯将第一时间与你联系。

留言点赞关注

我们一起分享AI学习与发展的干货

如转载,请后台留言,遵守转载规范

相关推荐

《Queendom》宣布冠军!女团MAMAMOO四人激动落泪

网易娱乐11月1日报道据台湾媒体报道,南韩女团竞争回归的生死斗《Queendom》昨(10/31)晚播出大决赛,并以直播方式进行,6组女团、女歌手皆演唱新歌,并加总前三轮的赛前赛、音源成绩与直播现场投...

正确复制、重写别人的代码,不算抄袭

我最近在一篇文章提到,工程师应该怎样避免使用大量的库、包以及其他依赖关系。我建议的另一种方案是,如果你没有达到重用第三方代码的阈值时,那么你就可以自己编写代码。在本文中,我将讨论一个在重用和从头开始编...

HTML DOM tr 对象_html event对象

tr对象tr对象代表了HTML表格的行。HTML文档中出现一个<tr>标签,就会创建一个tr对象。tr对象集合W3C:W3C标签。集合描述W3Ccells返回...

JS 打造动态表格_js如何动态改变表格内容

后台列表页最常见的需求:点击表头排序+一键全选。本文用原生js代码实现零依赖方案,涵盖DOM查询、排序算法、事件代理三大核心技能。效果速览一、核心思路事件入口:为每个<th>绑...

连肝7个晚上,总结了66条计算机网络的知识点

作者|哪吒来源|程序员小灰(ID:chengxuyuanxiaohui)计算机网络知识是面试常考的内容,在实际工作中经常涉及。最近,我总结了66条计算机网络相关的知识点。1、比较http0....

Vue 中 强制组件重新渲染的正确方法

作者:MichaelThiessen译者:前端小智来源:hackernoon有时候,依赖Vue响应方式来更新数据是不够的,相反,我们需要手动重新渲染组件来更新数据。或者,我们可能只想抛开当前的...

为什么100个前端只有1人能说清?浏览器重排/重绘深度解析

面试现场的"致命拷问""你的项目里做过哪些性能优化?能具体讲讲重排和重绘的区别吗?"作为面试官,我在秋招季连续面试过100多位前端候选人,这句提问几乎成了必考题。但令...

HTML DOM 介绍_dom4j html

HTMLDOM(文档对象模型)是一种基于文档的编程接口,它是HTML和XML文档的编程接口。它可以让开发人员通过JavaScript或其他脚本语言来访问和操作HTML和XML文档...

JavaScript 事件——“事件流和事件处理程序”的注意要点

事件流事件流描述的是从页面中接收事件的顺序。IE的事件流是事件冒泡流,而NetscapeCommunicator的事件流是事件捕获流。事件冒泡即事件开始时由最具体的元素接收,然后逐级向上传播到较为不...

探秘 Web 水印技术_水印制作网页

作者:fransli,腾讯PCG前端开发工程师Web水印技术在信息安全和版权保护等领域有着广泛的应用,对防止信息泄露或知识产品被侵犯有重要意义。水印根据可见性可分为可见水印和不可见水印(盲水印)...

国外顶流网红为流量拍摄性侵女学生?仅被封杀三月,回归仍爆火

曾经的油管之王,顶流网红DavidDobrik复出了。一切似乎都跟他因和成员灌酒性侵女学生被骂到退网之前一样:住在950万美元的豪宅,开着20万美元的阿斯顿马丁,每条视频都有数百万观看...人们仿佛...

JavaScript 内存泄漏排查方法_js内存泄漏及解决方法

一、概述本文主要介绍了如何通过Devtools的Memory内存工具排查JavaScript内存泄漏问题。先介绍了一些相关概念,说明了Memory内存工具的使用方式,然后介绍了堆快照的...

外贸独立站,网站优化的具体内容_外贸独立站,网站优化的具体内容有哪些

Wordpress网站优化,是通过优化代码、数据库、缓存、CSS/JS等内容,提升网站加载速度、交互性和稳定性。网站加载速度,是Google搜索引擎的第一权重,也是SEO优化的前提。1.优化渲染阻塞。...

这8个CSS工具可以提升编程速度_css用什么编译器

下面为大家推荐的这8个CSS工具,有提供函数的,有提供类的,有提取代码的,还有收集CSS的统计数据的……请花费两分钟的时间看完这篇文章,或许你会找到意外的惊喜,并且为你的编程之路打开了一扇新的大门。1...

vue的理解-vue源码 历史 简介 核心特性 和jquery区别 和 react对比

一、从历史说起Web是WorldWideWeb的简称,中文译为万维网我们可以将它规划成如下的几个时代来进行理解石器时代文明时代工业革命时代百花齐放时代石器时代石器时代指的就是我们的静态网页,可以欣...