百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

利用Python识别车牌技术,几行代码实现

itomcoil 2025-02-20 15:56 19 浏览

车牌识别在高速公路中有着广泛的应用,比如我们常见的电子收费(ETC)系统和交通违章车辆的检测,除此之外像小区或地下车库门禁也会用到,基本上凡是需要对车辆进行身份检测的地方都会用到。

简介

车牌识别系统(Vehicle License Plate Recognition)是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常一个车牌识别系统主要包括以下这四个部分:

  • 车辆图像获取
  • 车牌定位
  • 车牌字符分割
  • 车牌字符识别

我们再来看一下百科中对车牌识别技术的描述:

车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目前最新的技术水平为字母和数字的识别率可达到 99.7%,汉字的识别率可达到 99%。
PS注意:在这里还是提醒下,很多人学Python过程中会遇到各种烦恼问题,没有人解答容易放弃。为此我建了个python学习资源群里面有最新学习资料,如果你想学python,可以关注我,后台私信我 ‘py’ 自动获取最新python教程资料!还有老司机解答哦!

实现方式

我们这里不做太复杂的车辆动态识别,只演示从图像中识别车牌信息,车牌识别功能的实现方式大致分为两种,一种是自己编写代码实现,另一种是借助第三方 API 接口实现。

自己实现

如果我们想要通过 Python 自己手动编码实现车牌识别功能,可以借助一些 Python 库,比如:OpenCV、TensorFlow 等,这种方式因为每一个功能点都需要我们自己编码实现,所有会相对复杂一些,另一方面如果我们想要保证识别的准确性,可能需要做大量的实验,也就是说会花费更多的时间。

第三方接口

现在已经有一些第三方平台实现好了车牌识别的功能,并且他们对外提供了 API 接口,我们只需要调用他们提供的接口即可,这种方式实现就相对简单了一些,并且通常接口提供方对外提供的接口功能的准确性也是基本可以保证的,原因很简单,如果接口功能太差的话,一是自己打脸,还有就是基本不会有什么人使用,也就失去了接口对外提供的价值了,另外第三方接口可能会收取一定费用,因此,如果现实中我们具体实现的话要综合考虑。

具体实现

综合上面的情况,我们这里采用第三方接口的方式来实现车牌识别的功能,接口提供方我们选择百度云提供的接口,百度云接口提供了免费额度,简单来说就是每天可以免费使用多少次,如果超过了这个次数就需要交钱什么的了,文档地址为:
https://cloud.baidu.com/doc/OCR/index.html ,下面来看一下具体实现过程。

SDK 安装

百度云 SDK 对多种语言提供了支持,比如:Python、Java、C++、IOS、Android 等,这里我们安装 Python 版的 SDK,安装很简单,使用 pip install baidu-aip 命令即可,SDK 支持 Python 的版本为:2.7+ 与 3.x,SDK 目录结构如下:

├── README.md
├── aip                   // SDK 目录
│   ├── __init__.py       // 导出类
│   ├── base.py           // aip 基类
│   ├── http.py           // http 请求
│   └── ocr.py //OCR
└── setup.py              // setuptools 安装

创建应用

SDK 安装好后,我们接着需要创建应用了,这里需要一个百度账号或百度云账号,如果没有的话自己注册一个即可,登录及注册地址为:
https://login.bce.baidu.com/?redirect=
http%3A%2F%2Fcloud.baidu.com%2Fcampaign%2Fcampus-2018%2Findex.html ,登录之后,我们将鼠标移动到登录头像位置,接着在弹出菜单中单击用户中心,如下图所示:

如果是首次进入的话,勾选一下相应信息,如下图所示:

信息勾选完了之后,点击保存按钮。

接着将鼠标移动到左侧栏中 > 符号位置,再依次选择人工智能和文字识别,如下图所示:

点击之后会进入到下图中:

我们点击创建应用,进入下图中:

这里我们只需要填一下应用名称和下面的应用描述即可,填写完毕之后点击立即创建。

创建完后,我们再返回应用列表,如下图所示:

这里我们需要用到三个值:AppID、API Key 和 Secret Key。

具体实现

应用创建完了,我们就可以调用接口实现车牌识别功能了。

首先,我们要创建 AipOcr,AipOcr 是 OCR 的 Python SDK 客户端,为使用 OCR 的开发人员提供了一系列的交互方法,代码实现也比较简单,如下所示:

from aip import AipOcr

# 自己的 APPID AK SK
APP_ID = '自己的 App ID'
API_KEY = '自己的 Api Key'
SECRET_KEY = '自己的 Secret Key'

client = AipOcr(APP_ID, API_KEY, SECRET_KEY)

在上面代码中,常量 APP_ID、API_KEY 和 SECRET_KEY 就是我们在查看应用列表时说的需要用到的常量值,这些值均为字符串,用于标识用户,为访问做签名验证。

如果我们需要配置 AipOcr 的网络请求参数,可以在构造 AipOcr 之后调用接口设置参数,目前支持两个参数,看一下代码实现:

# 建立连接的超时时间,单位为毫秒
client.setConnectionTimeoutInMillis(5000)
# 通过打开的连接传输数据的超时时间,单位为毫秒
client.setSocketTimeoutInMillis(5000)

总的来说通过接口方式实现车牌识别功能是比较简单的,以如下图为例:

实现代码如下:

from aip import AipOcr

APP_ID = '自己的 App ID'
API_KEY = '自己的 Api Key'
SECRET_KEY = '自己的 Secret Key'
# 创建客户端对象
client = AipOcr(APP_ID, API_KEY, SECRET_KEY)
# 建立连接的超时时间,单位为毫秒
client.setConnectionTimeoutInMillis(5000)
# 通过打开的连接传输数据的超时时间,单位为毫秒
client.setSocketTimeoutInMillis(5000)

# 读取图片
def get_file_content(filePath):
    with open(filePath, 'rb') as fp:
        return fp.read()

image = get_file_content('car.jpeg')
res = client.licensePlate(image)
print('车牌号码:' + res['words_result']['number'])
print('车牌颜色:' + res['words_result']['color'])

执行结果:

车牌号码:川QK9777
车牌颜色:blue

上面代码实现的是对一张图片中的一个车牌进行识别,当然接口还支持对一张图片中的多个车牌进行识别,只需使用 licensePlate(image, options) 即可, 以如下图为例:

实现代码如下:

from aip import AipOcr

APP_ID = '自己的 App ID'
API_KEY = '自己的 Api Key'
SECRET_KEY = '自己的 Secret Key'
# 创建客户端对象
client = AipOcr(APP_ID, API_KEY, SECRET_KEY)
# 建立连接的超时时间,单位为毫秒
client.setConnectionTimeoutInMillis(5000)
# 通过打开的连接传输数据的超时时间,单位为毫秒
client.setSocketTimeoutInMillis(5000)

# 读取图片
def get_file_content(filePath):
    with open(filePath, 'rb') as fp:
        return fp.read()

image = get_file_content('cars.png')
options = {}
# 参数 multi_detect 默认为 false
options['multi_detect'] = 'true'
res = client.licensePlate(image, options)
for wr in res['words_result']:
    print('车牌号码:' + wr['number'])
    print('车牌颜色:' + wr['color'])

执行结果:

车牌号码:京N6HZ61
车牌颜色:blue
车牌号码:鲁NS1A26
车牌颜色:blue

总结

本文我们先对车牌识别进行了一些介绍,之后利用百度云接口实现了单个和多个车牌的识别功能,通过本文我们可以对车牌识别的相关概念和具体实现有一些了解。注意:在这里还是提醒下,很多人学Python过程中会遇到各种烦恼问题,没有人解答容易放弃。为此我建了个python学习资源群里面有最新学习资料,如果你想学python,可以关注我,后台私信我 ‘py’ 自动获取最新python教程资料!还有老司机解答哦!


相关推荐

最强聚类模型,层次聚类 !!_层次聚类的优缺点

哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...

python决策树用于分类和回归问题实际应用案例

决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...

Python教程(四十五):推荐系统-个性化推荐算法

今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...

简单学Python——NumPy库7——排序和去重

NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...

PyTorch实战:TorchVision目标检测模型微调完

PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...

C4.5算法解释_简述c4.5算法的基本思想

C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...

Python中的数据聚类及可视化分析实践

探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...

用Python来统计大乐透号码的概率分布

用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...

python:支持向量机监督学习算法用于二分类和多分类问题示例

监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...

25个例子学会Pandas Groupby 操作

groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...

数据挖掘流程_数据挖掘流程主要有哪些步骤

数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...

使用Python寻找图像最常见的颜色_python 以图找图

如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...

财务预算分析全网最佳实践:从每月分析到每天分析

原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...

常用数据工具去重方法_数据去重公式

在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...

Python教程(四十):PyTorch深度学习-动态计算图

今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...