百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Python NumPy库的安装和使用

itomcoil 2025-02-27 15:34 32 浏览

NumPy 就是一个数学运算的库,使用 C 语言实现的,所以运算速度非常快。该模块也不是 Python 自带的,需要自行安装。

可以使用 PIP 进行安装,命令如下:

pip install numpy

使用该模块之前需要将其引入,常用的方法是:

import numpy as np

这样以后就可以使用 np 来表示该模块了。

NumPy 最常见的数据结构就是 ndarray,ndarray 表示 N-dimentioanl Array,就是多维数组的意思。本节也从这里开始介绍 NumPy。

ndarray的构造

可以使用多种方式来构建多维数组,最常见的是使用列表来构建多维数组。下面的例子便使用一维列表构建了一个一维数组。

>>> import numpy as np
>>> nda1 = np.array([1, 2, 3])        # 使用一维列表来作为输入
>>> nda1                       
array([1, 2, 3])6    >>> type(nda1)

如果希望构建二维数组,可以使用下面的方法:

>>> input_list = [
...     [1, 2, 3],
...     [4, 5, 6]
... ]
>>> nda2 = np.array(input_list)
>>> nda2
array([[1, 2, 3],                    # 查看值
       [4, 5, 6]])
>>> type(nda2)                        # 查看类型

也可以指定一些特征值,让 NumPy 自动产生相关的数组。例如指定维度,让其产生所有元素都为正常 0 的数组,代码如下:

>>> np.zeros(5)                        # 5个元素的一维数组
array([0., 0., 0., 0., 0.])
>>> np.zeros((5, 2))                # 二维数组,5行,2列
array([[0., 0.],
       [0., 0.],
       [0., 0.],
       [0., 0.],
       [0., 0.]])

也可以指定维度,让其产生所有元素值都为 1 的数组,代码如下:

>>> np.ones((5, 2))                    # 二维数组,5行,2列,所有元素都为1
array([[1., 1.],
       [1., 1.],
       [1., 1.],
       [1., 1.],
       [1., 1.]])
>>> np.ones(5)                        # 一维数组,5个元素
array([1., 1., 1., 1., 1.])

还可以让 NumPy 自动产生等差数组,此时需要指定开始值、结束值和步长。代码如下:

>>> np.arange(3,7,2)                # 从3开始,直到7,步长为2
array([3, 5])
>>> np.arange(3,7,1)                # 从3开始,直到7,步长为1
array([3, 4, 5, 6])
>>> np.arange(7, 3, -1)                # 从7开始,直到3,步长为-1
array([7, 6, 5, 4])
>>> np.arange(7, 3, -2)                # 从7开始,直到3,步长为-2
array([7, 5])

arange() 函数和 range() 类似,如果仅提供一个值,那么开始值就是 0,步长是 1,代码如下:

>>> np.arange(7)
array([0, 1, 2, 3, 4, 5, 6])
如果提供两个参数,那么步长为 1:
>>> np.arange(2, 5)                # 从2开始,直到5,步长为1
array([2, 3, 4])
>>> np.arange(2, 6)                # 从2开始,直到6,步长为1
array([2, 3, 4, 5])


另外一个等差数列函数是 linspace(),其指定开始位置和结束位置,但不指定步长,而是指定元素个数。例如从 1 开始,到 5 结束,一共有 8 个数,那么生成的数组如下面所示:

>>> np.linspace(1, 5, 8)        # 包括1和5,等分8个点
array([1. , 1.57142857, 2.14285714, 2.71428571, 3.28571429,
     3.85714286, 4.42857143, 5])

可以发现元素个数和指定的一致,开始值和结束值也都被包含,而且它们的确是等差数列。

linspace() 函数比较有用,例如要画正弦函数在 0 到 2π 之间的图形,便可以使用该函数在 0 到 2π 之间产生均匀分布的 100 个点,然后使用 matplotlib 将它们画出来。下面是演示的代码:

import matplotlib.pyplot as plt
import numpy as np
x  = np.linspace(0, 2*np.pi, 100)
y  = [np.sin(e) for e in x]
plt.plot(x, y)
plt.savefig("sindemo1.png")

运行后产生的图片如图 1 所示。

还可以使用 logspace() 函数让 NumPy 自动产生等比数列,此时需要指定开始点和结束点,同时指定点的个数。如果没有提供点的数目,默认是生成 50 个点。

>>> np.logspace(2.0, 3.0, num=4)    # 4个点,其实位置是102,结束位置是103
array([ 100. , 215.443469,  464.15888336, 1000.])


下面是一个例子,其演示了 logspace() 的用法和参数 endpoint 的用法。endpoint=True 表示结束值被包含在输出数组中,否则表示不包含在输出数组中。下面是完整的代码:

import matplotlib.pyplot as plt
import numpy as np
N = 10            # 一共10个点
x1 = np.logspace(0.1, 1, N, endpoint=True)        # 10被算作是最后一个点
x2 = np.logspace(0.1, 1, N, endpoint=False)    # 10不被算作是最后一个点
y = np.zeros(N)
plt.plot(x1, y, 'o')
plt.plot(x2, y + 0.5, 'x')
plt.ylim([-0.5, 1])                                # y轴的范围是-0.5到1
plt.savefig("logspace1.png")                    # 保存图片到文件

运行该脚本,得到的输出图片如图 2 所示。

还可以使用 full() 函数指定维度和一个值,让所有的元素都等于该值。该函数和 ones() 类似,但值是由用户指定的。

>>> np.full((2, 2), np.inf)                # 所有元素都是无穷大
array([[inf, inf],
       [inf, inf]])
>>> np.full((2, 2), 11)                    # 所有元素都是11
array([[11, 11],
       [11, 11]])
>>> np.full((2, 2), 1.51)                # 所有元素都是1.51
array([[1.51, 1.51],
       [1.51, 1.51]])


使用 eye() 函数还可以自动生成单位矩阵,就是仅对角线上的值为 1,其他位置上的值都为 0。

>>> np.eye(2)                                    # 2x2的单位矩阵
array([[1., 0.],
       [0., 1.]])
>>> np.eye(3)                                    # 3x3的单位矩阵
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

还可以自动产生随机的矩阵,例如可以使用 random.normal() 函数产生一个正态分布的一维矩阵:

>>> mu, sigma = 0, 0.1                    # mu是平均值,sigma代表分散程度
>>> s = np.random.normal(mu, sigma, 1000)
>>> s.size                                        # 元素个数为1000
1000
>>> np.mean(s)                                    # 平均值接近0
-0.0011152161285000821
>>> abs(mu - np.mean(s)) < 0.01                # 平均值接近mu=0
True
>>> abs(sigma - np.std(s, ddof=1)) < 0.01        # 分散程度检查
True

可以将生成的数据画出来,使用下面的代码:

import matplotlib.pyplot as plt
import numpy as np
mu, sigma = 0, 0.1
s = np.random.normal(mu, sigma, 1000)
count, bins, ignored = plt.hist(s, 30, density=True)
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
         np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
         linewidth=2, color='r')
plt.savefig("rand1.png")

运行该脚本,得到的输出图片文件如图 3 所示。

还可以生成完全随机的矩阵,方法是使用 np.random.rand(外形)函数。例如在下面的例子中,就生成了随机内容组成的指定外形的矩阵。

>>> np.random.rand(3,2)                    # 3x2的二维矩阵
array([[0.11319256, 0.84668147],
       [0.4040353 , 0.70912343],
       [0.6511614 , 0.80706271]])
>>> np.random.rand(3,2,2)                # 3x2x2的三维矩阵
array([[[0.64851863, 0.3895985 ],
        [0.63038544, 0.58402249]],
       [[0.39816687, 0.92149102],
        [0.07113285, 0.17109903]],
       [[0.06713956, 0.39415293],
        [0.06125844, 0.71276929]]])
>>> np.random.rand(4)                    # 一维矩阵
array([0.11918788, 0.91847982, 0.29599804, 0.42242323])

相关推荐

《Queendom》宣布冠军!女团MAMAMOO四人激动落泪

网易娱乐11月1日报道据台湾媒体报道,南韩女团竞争回归的生死斗《Queendom》昨(10/31)晚播出大决赛,并以直播方式进行,6组女团、女歌手皆演唱新歌,并加总前三轮的赛前赛、音源成绩与直播现场投...

正确复制、重写别人的代码,不算抄袭

我最近在一篇文章提到,工程师应该怎样避免使用大量的库、包以及其他依赖关系。我建议的另一种方案是,如果你没有达到重用第三方代码的阈值时,那么你就可以自己编写代码。在本文中,我将讨论一个在重用和从头开始编...

HTML DOM tr 对象_html event对象

tr对象tr对象代表了HTML表格的行。HTML文档中出现一个<tr>标签,就会创建一个tr对象。tr对象集合W3C:W3C标签。集合描述W3Ccells返回...

JS 打造动态表格_js如何动态改变表格内容

后台列表页最常见的需求:点击表头排序+一键全选。本文用原生js代码实现零依赖方案,涵盖DOM查询、排序算法、事件代理三大核心技能。效果速览一、核心思路事件入口:为每个<th>绑...

连肝7个晚上,总结了66条计算机网络的知识点

作者|哪吒来源|程序员小灰(ID:chengxuyuanxiaohui)计算机网络知识是面试常考的内容,在实际工作中经常涉及。最近,我总结了66条计算机网络相关的知识点。1、比较http0....

Vue 中 强制组件重新渲染的正确方法

作者:MichaelThiessen译者:前端小智来源:hackernoon有时候,依赖Vue响应方式来更新数据是不够的,相反,我们需要手动重新渲染组件来更新数据。或者,我们可能只想抛开当前的...

为什么100个前端只有1人能说清?浏览器重排/重绘深度解析

面试现场的"致命拷问""你的项目里做过哪些性能优化?能具体讲讲重排和重绘的区别吗?"作为面试官,我在秋招季连续面试过100多位前端候选人,这句提问几乎成了必考题。但令...

HTML DOM 介绍_dom4j html

HTMLDOM(文档对象模型)是一种基于文档的编程接口,它是HTML和XML文档的编程接口。它可以让开发人员通过JavaScript或其他脚本语言来访问和操作HTML和XML文档...

JavaScript 事件——“事件流和事件处理程序”的注意要点

事件流事件流描述的是从页面中接收事件的顺序。IE的事件流是事件冒泡流,而NetscapeCommunicator的事件流是事件捕获流。事件冒泡即事件开始时由最具体的元素接收,然后逐级向上传播到较为不...

探秘 Web 水印技术_水印制作网页

作者:fransli,腾讯PCG前端开发工程师Web水印技术在信息安全和版权保护等领域有着广泛的应用,对防止信息泄露或知识产品被侵犯有重要意义。水印根据可见性可分为可见水印和不可见水印(盲水印)...

国外顶流网红为流量拍摄性侵女学生?仅被封杀三月,回归仍爆火

曾经的油管之王,顶流网红DavidDobrik复出了。一切似乎都跟他因和成员灌酒性侵女学生被骂到退网之前一样:住在950万美元的豪宅,开着20万美元的阿斯顿马丁,每条视频都有数百万观看...人们仿佛...

JavaScript 内存泄漏排查方法_js内存泄漏及解决方法

一、概述本文主要介绍了如何通过Devtools的Memory内存工具排查JavaScript内存泄漏问题。先介绍了一些相关概念,说明了Memory内存工具的使用方式,然后介绍了堆快照的...

外贸独立站,网站优化的具体内容_外贸独立站,网站优化的具体内容有哪些

Wordpress网站优化,是通过优化代码、数据库、缓存、CSS/JS等内容,提升网站加载速度、交互性和稳定性。网站加载速度,是Google搜索引擎的第一权重,也是SEO优化的前提。1.优化渲染阻塞。...

这8个CSS工具可以提升编程速度_css用什么编译器

下面为大家推荐的这8个CSS工具,有提供函数的,有提供类的,有提取代码的,还有收集CSS的统计数据的……请花费两分钟的时间看完这篇文章,或许你会找到意外的惊喜,并且为你的编程之路打开了一扇新的大门。1...

vue的理解-vue源码 历史 简介 核心特性 和jquery区别 和 react对比

一、从历史说起Web是WorldWideWeb的简称,中文译为万维网我们可以将它规划成如下的几个时代来进行理解石器时代文明时代工业革命时代百花齐放时代石器时代石器时代指的就是我们的静态网页,可以欣...