Pony - 最智能的 Python ORM 框架
itomcoil 2024-12-13 14:02 133 浏览
在代码里手写 SQL 并不是一件愉快的事情,故而,代码中往往使用 ORM,把代码中定义的数据模型、查询和数据操作转换为 SQL 语言来操作数据库。不同的 ORM,对于数据库操作的抽象程度也有所不同,抽象程度更高的 ORM,往往能够写出更为贴合编程语言的数据操作代码,且对 SQL 的转换有更为智能的处理,隐去更多无需关注的底层细节,使代码变得更为优雅,提高开发效率。Pony,就是一个具有高抽象程度的 Python 语言的 ORM 框架,其优雅的语法,甚至支持使用 Python 中的列表推导式进行数据库查询。
简介
Pony,是 ponyorm 在 Github 上开源的 Python ORM 框架,项目位于 https://github.com/ponyorm/pony,目前版本为 0.7.13。Pony 提供了十分 Pythonic 的 API,易于学习,使用方便。Pony 提供了基于实体的数据模型定义,精简的查询语法,全面的报错信息,并能输出可读性强的生成的 SQL 语句。这些大大提升了开发效率,使得使用 Python 语言进行数据库操作更为方便。相比于已有的 Django 和 SQLAlchemy 等 ORM,Pony 提供了 IdentityMap 模式,自动的事务管理,自动的查询和数据缓存,以及对于高级 SQL 语法的支持等。
安装
Pony 支持 Python 2.7 和 Python 3,可以使用 pip 安装:
pip install pony
Pony 目前支持的数据库包括 SQLite、PostgreSQL、MySQL、Oracle CockroachDB。当使用 SQLite 时,无需额外的依赖,而使用其他的数据库,需要安装对应的驱动。
示例
Pony 使用十分简单。首先,需要实例化数据库,连接到对应的数据库后端:
from pony.orm import *
db = Database("sqlite", "estore.sqlite", create_db=True)
使用 create_db 参数进行数据库创建。也可以先创建一个数据库实例,之后再进行绑定:
db = Database()
db.bind(provider='sqlite', filename='database.sqlite', create_db=True)
Pony 使用实体关系模型作为数据模型:
class Person(db.Entity):
name = Required(str)
age = Required(int)
cars = Set('Car')
class Car(db.Entity):
make = Required(str)
model = Required(str)
owner = Required(Person)
对于数据模型 Person,定义了3个属性:name,一个非空的字符串;age,一个非空的整数;cars,一个数据关系,是一个指向实体 Car 的集合,表示这个人所拥有的车辆集合。相似地,在实体 Car 中,定义了属性 owner,指向 Person,表示车辆对应的拥有者。通过这两个关系,我们就实现了 Person 和 Car 之间一对多的数据关系。Pony 还提供了一个方便的工具函数 show,用来打印实体的定义:
>>> show(Person)
class Person(Entity):
id = PrimaryKey(int, auto=True)
name = Required(str)
age = Required(int)
cars = Set(Car)
注意到,Person 比代码中的定义多了一个 id 属性,这是因为我们没有定义主键,故而 Pony 自动添加了一个 id 主键。
在定义了数据实体后,我们需要把它们映射到数据库的数据表:
db.generate_mapping(create_tables=True)
使用 create_tables 参数,当表不存在时自动创建。
在完成了数据模型的定义后,就可以进行数据实例的创建:
>>> p1 = Person(name='John', age=20)
>>> p2 = Person(name='Mary', age=22)
>>> p3 = Person(name='Bob', age=30)
>>> c1 = Car(make='Toyota', model='Prius', owner=p2)
>>> c2 = Car(make='Ford', model='Explorer', owner=p3)
>>> commit()
在调用 commit 后,会产生 SQL 的 INSERT 语句,把所有数据实例插入到数据库中。也可以使用 db_session 上下文,对 session 进行自动管理:
with db_session:
p = Person(name='Kate', age=33)
Car(make='Audi', model='R8', owner=p)
Pony 提供了十分优雅的查询方式,可以使用 Python 的生成器表达式和 lambda 函数进行数据库查询。我们来看一个基本例子:
>>> select(p for p in Person if p.age > 20)
<pony.orm.core.Query at 0x105e74d10>
这里,使用了 Pony 的 select 接口,对数据库进行查询,查询所有年龄大于20岁的人的记录,返回一个 Query 对象。想要得到数据列表,我们支持使用列表的范围切片语法:
>>> select(p for p in Person if p.age > 20)[:]
SELECT "p"."id", "p"."name", "p"."age"
FROM "Person" "p"
WHERE "p"."age" > 20
[Person[2], Person[3]]
可以看到,Pony 把一个列表推导形式的 Python 语句,转换为了对应的 SQL 查询语句,返回了符合条件的数据列表。相比于使用 where 函数等其他 ORM 采用的查询方式,Pony 的查询语法真正做到了 Pythonic,使得操作数据库表时仿佛在操作原生的 Python 列表。 Pony 还提供了聚合查询:
>>> print max(p.age for p in Person)
SELECT MAX("p"."age")
FROM "Person" "p"
30
使用 max 函数,就直接实现了对 Person.age 进行最大值的聚合查询。
>>> select((p, count(p.cars)) for p in Person)[:]
SELECT "p"."id", COUNT(DISTINCT "car-1"."id")
FROM "Person" "p"
LEFT JOIN "Car" "car-1"
ON "p"."id" = "car-1"."owner"
GROUP BY "p"."id"
[(Person[1], 0), (Person[2], 1), (Person[3], 1)]
代码语义十分清晰,查询所有的人,和每人所拥有的车辆数。这条看似简单的逻辑,翻译成 SQL,就会涉及到 Person 和 Car 模型的 join,以及对于 Person 的 group_by,还有计数的聚合查询和去重问题,可以看到,转换得到的 SQL 语句共5行涉及了众多的 SQL 语法和概念。Pony 使用一行语义清晰的 Python 代码,就实现了一个较为复杂的 SQL 查询,令人印象深刻。
另外,排序可以使用 Query 提供的 order_by 实现:
>>> select(p for p in Person).order_by(Person.name)[:2]
SELECT "p"."id", "p"."name", "p"."age"
FROM "Person" "p"
ORDER BY "p"."name"
LIMIT 2
[Person[3], Person[1]]
这里还使用了 [:2] 的语法,实现了 SQL 中的 LIMIT 语法。
如果你更喜欢使用 lambda 函数,Pony 也提供了 lambda 函数的数据查询方式:
product_list = Product.select(lambda p: p.price > 100)[:]
Pony 还提供了自动的去重查询。当进行数据的单个属性的查询时,我们往往希望查询的是所有出现的值的集合。Pony 会自动判断当前查询的语义,进行 DISTINCT 去重的添加。例如,想要查询所有人的名字:
select(p.name for p in Person)
在这里,查询语句只查询名字这一个属性,意味着我们想要得到的是所有名字的集合,而对于重名的情况并不关心,Pony 就会自动添加 DISTINCT:
SELECT DISTINCT "p"."name"
FROM "Person" "p"
对于使用主键查询数据实例,Pony 使用了极为简洁的方括号语法:
customer1 = Customer[123]
对于符合主键的模型,这个语法也是可以工作的:
order_item = OrderItem[order1, product1]
对于数据的修改和删除也是十分简单的:
Product[123].quantity += 10
Order[123].delete()
也提供了批量更新和修改:
update(p.set(price=price * 1.1) for p in Product
if p.category.name == "T-Shirt")
delete(p for p in Product if p.category.name == 'SD Card')
总结
作为一个 Python 语言的 ORM 框架,以其优雅的接口语法,和智能的自动化处理能力,成为了其他 ORM 框架的有力竞争,值得开发者们进行使用,有兴趣的话还可以对其实现源码进行学习研究,进行开源贡献。
相关推荐
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
-
在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...
- Connect 2.0来了,还有Nuke和Maya新集成
-
ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
-
什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...
- Python入坑系列:桌面GUI开发之Pyside6
-
阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
-
通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...
- pyside2的基础界面(pyside2显示图片)
-
今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...
- Python GUI开发:打包PySide2应用(python 打包pyc)
-
之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
-
PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
-
之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
-
Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...
- Python操作系统资源管理与监控(python调用资源管理器)
-
在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...
- 本地部署开源版Manus+DeepSeek创建自己的AI智能体
-
1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...
- 一文教会你,搭建AI模型训练与微调环境,包学会的!
-
一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...
- 使用scikit-learn为PyTorch 模型进行超参数网格搜索
-
scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...
- 如何Keras自动编码器给极端罕见事件分类
-
全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...
- 一周热门
- 最近发表
-
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
- Connect 2.0来了,还有Nuke和Maya新集成
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
- Python入坑系列:桌面GUI开发之Pyside6
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
- pyside2的基础界面(pyside2显示图片)
- Python GUI开发:打包PySide2应用(python 打包pyc)
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)