Pony - 最智能的 Python ORM 框架
itomcoil 2024-12-13 14:02 128 浏览
在代码里手写 SQL 并不是一件愉快的事情,故而,代码中往往使用 ORM,把代码中定义的数据模型、查询和数据操作转换为 SQL 语言来操作数据库。不同的 ORM,对于数据库操作的抽象程度也有所不同,抽象程度更高的 ORM,往往能够写出更为贴合编程语言的数据操作代码,且对 SQL 的转换有更为智能的处理,隐去更多无需关注的底层细节,使代码变得更为优雅,提高开发效率。Pony,就是一个具有高抽象程度的 Python 语言的 ORM 框架,其优雅的语法,甚至支持使用 Python 中的列表推导式进行数据库查询。
简介
Pony,是 ponyorm 在 Github 上开源的 Python ORM 框架,项目位于 https://github.com/ponyorm/pony,目前版本为 0.7.13。Pony 提供了十分 Pythonic 的 API,易于学习,使用方便。Pony 提供了基于实体的数据模型定义,精简的查询语法,全面的报错信息,并能输出可读性强的生成的 SQL 语句。这些大大提升了开发效率,使得使用 Python 语言进行数据库操作更为方便。相比于已有的 Django 和 SQLAlchemy 等 ORM,Pony 提供了 IdentityMap 模式,自动的事务管理,自动的查询和数据缓存,以及对于高级 SQL 语法的支持等。
安装
Pony 支持 Python 2.7 和 Python 3,可以使用 pip 安装:
pip install pony
Pony 目前支持的数据库包括 SQLite、PostgreSQL、MySQL、Oracle CockroachDB。当使用 SQLite 时,无需额外的依赖,而使用其他的数据库,需要安装对应的驱动。
示例
Pony 使用十分简单。首先,需要实例化数据库,连接到对应的数据库后端:
from pony.orm import *
db = Database("sqlite", "estore.sqlite", create_db=True)
使用 create_db 参数进行数据库创建。也可以先创建一个数据库实例,之后再进行绑定:
db = Database()
db.bind(provider='sqlite', filename='database.sqlite', create_db=True)
Pony 使用实体关系模型作为数据模型:
class Person(db.Entity):
name = Required(str)
age = Required(int)
cars = Set('Car')
class Car(db.Entity):
make = Required(str)
model = Required(str)
owner = Required(Person)
对于数据模型 Person,定义了3个属性:name,一个非空的字符串;age,一个非空的整数;cars,一个数据关系,是一个指向实体 Car 的集合,表示这个人所拥有的车辆集合。相似地,在实体 Car 中,定义了属性 owner,指向 Person,表示车辆对应的拥有者。通过这两个关系,我们就实现了 Person 和 Car 之间一对多的数据关系。Pony 还提供了一个方便的工具函数 show,用来打印实体的定义:
>>> show(Person)
class Person(Entity):
id = PrimaryKey(int, auto=True)
name = Required(str)
age = Required(int)
cars = Set(Car)
注意到,Person 比代码中的定义多了一个 id 属性,这是因为我们没有定义主键,故而 Pony 自动添加了一个 id 主键。
在定义了数据实体后,我们需要把它们映射到数据库的数据表:
db.generate_mapping(create_tables=True)
使用 create_tables 参数,当表不存在时自动创建。
在完成了数据模型的定义后,就可以进行数据实例的创建:
>>> p1 = Person(name='John', age=20)
>>> p2 = Person(name='Mary', age=22)
>>> p3 = Person(name='Bob', age=30)
>>> c1 = Car(make='Toyota', model='Prius', owner=p2)
>>> c2 = Car(make='Ford', model='Explorer', owner=p3)
>>> commit()
在调用 commit 后,会产生 SQL 的 INSERT 语句,把所有数据实例插入到数据库中。也可以使用 db_session 上下文,对 session 进行自动管理:
with db_session:
p = Person(name='Kate', age=33)
Car(make='Audi', model='R8', owner=p)
Pony 提供了十分优雅的查询方式,可以使用 Python 的生成器表达式和 lambda 函数进行数据库查询。我们来看一个基本例子:
>>> select(p for p in Person if p.age > 20)
<pony.orm.core.Query at 0x105e74d10>
这里,使用了 Pony 的 select 接口,对数据库进行查询,查询所有年龄大于20岁的人的记录,返回一个 Query 对象。想要得到数据列表,我们支持使用列表的范围切片语法:
>>> select(p for p in Person if p.age > 20)[:]
SELECT "p"."id", "p"."name", "p"."age"
FROM "Person" "p"
WHERE "p"."age" > 20
[Person[2], Person[3]]
可以看到,Pony 把一个列表推导形式的 Python 语句,转换为了对应的 SQL 查询语句,返回了符合条件的数据列表。相比于使用 where 函数等其他 ORM 采用的查询方式,Pony 的查询语法真正做到了 Pythonic,使得操作数据库表时仿佛在操作原生的 Python 列表。 Pony 还提供了聚合查询:
>>> print max(p.age for p in Person)
SELECT MAX("p"."age")
FROM "Person" "p"
30
使用 max 函数,就直接实现了对 Person.age 进行最大值的聚合查询。
>>> select((p, count(p.cars)) for p in Person)[:]
SELECT "p"."id", COUNT(DISTINCT "car-1"."id")
FROM "Person" "p"
LEFT JOIN "Car" "car-1"
ON "p"."id" = "car-1"."owner"
GROUP BY "p"."id"
[(Person[1], 0), (Person[2], 1), (Person[3], 1)]
代码语义十分清晰,查询所有的人,和每人所拥有的车辆数。这条看似简单的逻辑,翻译成 SQL,就会涉及到 Person 和 Car 模型的 join,以及对于 Person 的 group_by,还有计数的聚合查询和去重问题,可以看到,转换得到的 SQL 语句共5行涉及了众多的 SQL 语法和概念。Pony 使用一行语义清晰的 Python 代码,就实现了一个较为复杂的 SQL 查询,令人印象深刻。
另外,排序可以使用 Query 提供的 order_by 实现:
>>> select(p for p in Person).order_by(Person.name)[:2]
SELECT "p"."id", "p"."name", "p"."age"
FROM "Person" "p"
ORDER BY "p"."name"
LIMIT 2
[Person[3], Person[1]]
这里还使用了 [:2] 的语法,实现了 SQL 中的 LIMIT 语法。
如果你更喜欢使用 lambda 函数,Pony 也提供了 lambda 函数的数据查询方式:
product_list = Product.select(lambda p: p.price > 100)[:]
Pony 还提供了自动的去重查询。当进行数据的单个属性的查询时,我们往往希望查询的是所有出现的值的集合。Pony 会自动判断当前查询的语义,进行 DISTINCT 去重的添加。例如,想要查询所有人的名字:
select(p.name for p in Person)
在这里,查询语句只查询名字这一个属性,意味着我们想要得到的是所有名字的集合,而对于重名的情况并不关心,Pony 就会自动添加 DISTINCT:
SELECT DISTINCT "p"."name"
FROM "Person" "p"
对于使用主键查询数据实例,Pony 使用了极为简洁的方括号语法:
customer1 = Customer[123]
对于符合主键的模型,这个语法也是可以工作的:
order_item = OrderItem[order1, product1]
对于数据的修改和删除也是十分简单的:
Product[123].quantity += 10
Order[123].delete()
也提供了批量更新和修改:
update(p.set(price=price * 1.1) for p in Product
if p.category.name == "T-Shirt")
delete(p for p in Product if p.category.name == 'SD Card')
总结
作为一个 Python 语言的 ORM 框架,以其优雅的接口语法,和智能的自动化处理能力,成为了其他 ORM 框架的有力竞争,值得开发者们进行使用,有兴趣的话还可以对其实现源码进行学习研究,进行开源贡献。
相关推荐
- Excel新函数TEXTSPLIT太强大了,轻松搞定数据拆分!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!最近我把WPS软件升级到了版本号:12.1.0.15990的最新版本,最版本已经支持文本拆分函数TEXTSPLIT了,并...
- Excel超强数据拆分函数TEXTSPLIT,从入门到精通!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!今天跟大家分享的是Excel超强数据拆分函数TEXTSPLIT,带你从入门到精通!TEXTSPLIT函数真是太强大了,轻松...
- 看完就会用的C++17特性总结(c++11常用新特性)
-
作者:taoklin,腾讯WXG后台开发一、简单特性1.namespace嵌套C++17使我们可以更加简洁使用命名空间:2.std::variant升级版的C语言Union在C++17之前,通...
- plsql字符串分割浅谈(plsql字符集设置)
-
工作之中遇到的小问题,在此抛出问题,并给出解决方法。一方面是为了给自己留下深刻印象,另一方面给遇到相似问题的同学一个解决思路。如若其中有写的不好或者不对的地方也请不加不吝赐教,集思广益,共同进步。遇到...
- javascript如何分割字符串(javascript切割字符串)
-
javascript如何分割字符串在JavaScript中,您可以使用字符串的`split()`方法来将一个字符串分割成一个数组。`split()`方法接收一个参数,这个参数指定了分割字符串的方式。如...
- TextSplit函数的使用方法(入门+进阶+高级共八种用法10个公式)
-
在Excel和WPS新增的几十个函数中,如果按实用性+功能性排名,textsplit排第二,无函数敢排第一。因为它不仅使用简单,而且解决了以前用超复杂公式才能搞定的难题。今天小编用10个公式,让你彻底...
- Python字符串split()方法使用技巧
-
在Python中,字符串操作可谓是基础且关键的技能,而今天咱们要重点攻克的“堡垒”——split()方法,它能将看似浑然一体的字符串,按照我们的需求进行拆分,极大地便利了数据处理与文本解析工作。基本语...
- go语言中字符串常用的系统函数(golang 字符串)
-
最近由于工作比较忙,视频有段时间没有更新了,在这里跟大家说声抱歉了,我尽快抽些时间整理下视频今天就发一篇关于go语言的基础知识吧!我这我工作中用到的一些常用函数,汇总出来分享给大家,希望对...
- 无规律文本拆分,这些函数你得会(没有分隔符没规律数据拆分)
-
今天文章来源于表格学员训练营群内答疑,混合文本拆分。其实拆分不难,只要规则明确就好办。就怕规则不清晰,或者规则太多。那真是,Oh,mygod.如上图所示进行拆分,文字表达实在是有点难,所以小熊变身灵...
- Python之文本解析:字符串格式化的逆操作?
-
引言前面的文章中,提到了关于Python中字符串中的相关操作,更多地涉及到了字符串的格式化,有些地方也称为字符串插值操作,本质上,就是把多个字符串拼接在一起,以固定的格式呈现。关于字符串的操作,其实还...
- 忘记【分列】吧,TEXTSPLIT拆分文本好用100倍
-
函数TEXTSPLIT的作用是:按分隔符将字符串拆分为行或列。仅ExcelM365版本可用。基本应用将A2单元格内容按逗号拆分。=TEXTSPLIT(A2,",")第二参数设置为逗号...
- Excel365版本新函数TEXTSPLIT,专攻文本拆分
-
Excel中字符串的处理,拆分和合并是比较常见的需求。合并,当前最好用的函数非TEXTJOIN不可。拆分,Office365于2022年3月更新了一个专业函数:TEXTSPLIT语法参数:【...
- 站长在线Python精讲使用正则表达式的split()方法分割字符串详解
-
欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中使用正则表达式的split()方法分割字符串详解》。使用正则表达式分割字符串在Python中使用正则表达式的split(...
- Java中字符串分割的方法(java字符串切割方法)
-
技术背景在Java编程中,经常需要对字符串进行分割操作,例如将一个包含多个信息的字符串按照特定的分隔符拆分成多个子字符串。常见的应用场景包括解析CSV文件、处理网络请求参数等。实现步骤1.使用Str...
- 因为一个函数strtok踩坑,我被老工程师无情嘲笑了
-
在用C/C++实现字符串切割中,strtok函数经常用到,其主要作用是按照给定的字符集分隔字符串,并返回各子字符串。但是实际上,可不止有strtok(),还有strtok、strtok_s、strto...
- 一周热门
- 最近发表
- 标签列表
-
- ps像素和厘米换算 (32)
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)