百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Python实现数组条件判断

itomcoil 2025-03-11 17:10 6 浏览


任务要求

对一个整数数组,如果整数数组中存在重复元素且重复元素均不相邻,函数返回字符"01";如果整数数组每个元素均不相同且偶数元素个数大于奇数元素个数,函数返回字符"02";如果整数数组均不满足上述两个条件,函数返回字符"03"。例如:数组[2, 2, 5, 3, 5],返回结果是'01'。

给定一个整数数组nums,判断其属性并返回相应的字符结果:

  • 条件一:数组中存在重复元素且所有重复元素均不相邻。
  • 条件二:数组中所有元素均不相同且偶数元素个数大于奇数元素个数。
  • 默认条件:若上述两个条件均不满足,则返回"03"。

例如:

输入:nums = [2, 2, 5, 3, 5],输出:"01"(因为数组中存在重复元素且重复元素均不相邻)。

输入:nums = [1, 3, 5, 7],输出:"02"(因为所有元素均不相同且偶数个数为0,小于奇数个数4)。

输入:nums = [1, 2, 3, 4],输出:"03"(因为既没有重复元素,也没有偶数个数大于奇数个数)。

任务分析

任务可以分为以下几个步骤:

1.检查条件一:

  • 首先遍历数组,检查是否存在重复元素。
  • 如果存在重复元素,则进一步检查这些重复元素是否不相邻。
  • 如果满足上述两个条件,则返回"01"。

2.检查条件二:

  • 如果条件一不满足,则检查数组中所有元素是否唯一。
  • 如果所有元素唯一,则统计偶数和奇数的个数。
  • 如果偶数个数大于奇数个数,则返回"02"。

3.默认情况:

  • 如果上述两个条件均不满足,则返回"03"。

任务实现

方法一:基础实现

def judge_array_properties(nums):
# 检查条件一:是否存在重复元素且所有重复元素均不相邻
seen = {}
has_duplicate = False
for
i in range(len(nums)):
if nums[i] in seen:
# 检查重复元素是否相邻
if i - seen[nums[i]] != 1:
has_duplicate = True
else
:
# 存在相邻的重复元素,直接跳过条件一
break
seen[nums[i]] = i
if has_duplicate:
return "01"
# 检查条件二:所有元素均不相同且偶数个数 > 奇数个数
if len(seen) == len(nums):
even_count = 0
odd_count = 0
for num in nums:
if num % 2 == 0:
even_count += 1
else:
odd_count += 1
if even_count > odd_count:
return "02"
# 默认情况
return "03"
# 测试案例
test_cases = [
[
2, 2, 5, 3, 5], # 条件一满足,返回 "01"
[1, 3, 5, 7], # 条件二满足,返回 "02"
[1, 2, 3, 4], # 两个条件均不满足,返回 "03"
]
for case in test_cases:
print(f"数组:{case},结果: {judge_array_properties(case)}")

说明:

1.初始化变量:

  • seen:用于记录每个元素及其最后一次出现的索引。
  • has_duplicate:标记是否存在重复元素。
  • adjacent_duplicate:标记是否存在相邻的重复元素。

2.遍历数组:

  • 对于每个元素,检查其是否已经在seen中。
  • 如果已经存在,则检查当前索引与之前索引的差是否为1(即是否相邻)。
  • 如果相邻,则设置adjacent_duplicate标记为True并终止循环。
  • 如果不相邻,则设置has_duplicate标记为True。

3.检查条件一:

  • 如果has_duplicateTrueadjacent_duplicateFalse,则返回"01"。

4.检查条件二:

  • 如果所有元素唯一(即len(seen) == len(nums)),则统计偶数和奇数的个数。
  • 如果偶数个数大于奇数个数,则返回"02"。

5.默认情况:

  • 如果上述两个条件均不满足,则返回"03"。

方法二:优化实现

def judge_array_properties_optimized(nums):
# 检查条件一:是否存在重复元素且所有重复元素均不相邻
seen = {}
has_duplicate = False
adjacent_duplicate = False
for
i in range(len(nums)):
if nums[i] in seen:
# 检查是否相邻
if i - seen[nums[i]] == 1:
adjacent_duplicate = True
break
else
:
has_duplicate = True
seen[nums[i]] = i
if has_duplicate and not adjacent_duplicate:
return "01"
# 检查条件二:所有元素均不相同且偶数个数 > 奇数个数
if len(seen) == len(nums):
even_count = sum(1 for num in nums if num % 2 == 0)
odd_count = len(nums) - even_count
if even_count > odd_count:
return "02"
# 默认情况
return "03"
# 测试案例
test_cases = [
[
2, 2, 5, 3, 5], # 条件一满足,返回 "01"
[1, 3, 5, 7], # 条件二满足,返回 "02"
[1, 2, 3, 4], # 两个条件均不满足,返回 "03"
]
for case in test_cases:
print(f"数组:{case},结果: {judge_array_properties_optimized(case)}")

运行结果:

优化点:

  • 在遍历数组时,同时记录是否存在重复元素和相邻重复元素。
  • 通过提前终止循环来优化性能。

运行结果

数组:[2, 2, 5, 3, 5],结果: 03

数组:[1, 3, 5, 7],结果: 03

数组:[1, 2, 3, 4],结果: 03

进程已结束,退出代码为 0

相关推荐

Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)

在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...

Connect 2.0来了,还有Nuke和Maya新集成

ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...

Magicgui:不会GUI编程也能轻松构建Python GUI应用

什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...

Python入坑系列:桌面GUI开发之Pyside6

阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...

Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI

通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...

pyside2的基础界面(pyside2显示图片)

今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...

Python GUI开发:打包PySide2应用(python 打包pyc)

之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...

使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂

PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...

pycharm中conda解释器无法配置(pycharm安装的解释器不能用)

之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...

Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建

Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...

Python操作系统资源管理与监控(python调用资源管理器)

在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...

本地部署开源版Manus+DeepSeek创建自己的AI智能体

1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...

一文教会你,搭建AI模型训练与微调环境,包学会的!

一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...

使用scikit-learn为PyTorch 模型进行超参数网格搜索

scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...