百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

告别「复制+粘贴」,基于深度学习的OCR,实现PDF转文本

itomcoil 2025-03-12 15:52 7 浏览

选自Towardsdatascience

作者:Lucas Soares

机器之心编译

编辑:陈萍

对很多人来说,将 PDF 转换为可编辑的文本是个刚需,却苦于没有简单方法。在本文介绍的项目中,来自 K1 Digital 的高级机器学习工程师 Lucas Soares,尝试使用 OCR(光学字符识别)自动转录 pdf 幻灯片,转录效果还不错。

传统的讲座通常伴随着一组 pdf 幻灯片。一般来说,想要对此类讲座做笔记,需要从 pdf 复制、粘贴很多内容。

最近,来自 K1 Digital 的高级机器学习工程师 Lucas Soares 一直在尝试通过使用 OCR(光学字符识别)自动转录 pdf 幻灯片,以便直接在 markdown 文件中操作它们的内容,从而避免手动复制和粘贴 pdf 内容,实现这一过程的自动化。

项目地址:https://github.com/EnkrateiaLucca/ocr_for_transcribing_pdf_slides

为什么不使用传统的 pdf 转文本工具呢?

Lucas Soares 发现传统工具往往会带来更多的问题,需要花时间解决。他曾经尝试使用传统的 Python 软件包,但是遇到了很多问题(例如必须使用复杂的正则表达式模式解析最终输出等),因此决定尝试使用目标检测和 OCR 来解决。

基本过程可分为以下步骤:

  • 将 pdf 转换为图片;
  • 检测和识别图像中的文本;
  • 展示示例输出。

基于深度学习的 OCR 将 pdf 转录为文本

将 pdf 转换为图像

Soares 使用的 pdf 幻灯片来自于 David Silver 的增强学习(参见以下 pdf 幻灯片地址)。使用「pdf2image」包将每张幻灯片转换为 png 图像格式。

地址:https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

代码如下:

from pdf2image import convert_from_path
from pdf2image.exceptions import (
 PDFInfoNotInstalledError,
 PDFPageCountError,
 PDFSyntaxError
)

pdf_path = "path/to/file/intro_RL_Lecture1.pdf"
images = convert_from_path(pdf_path)
for i, image in enumerate(images):
    fname = "image" + str(i) + ".png"
    image.save(fname, "PNG")

经过处理后,所有的 pdf 幻灯片都转换成 png 格式的图像:

检测和识别图像中的文本

为了检测和识别 png 图像中的文本,Soares 使用 ocr.pytorch 库中的文本检测器。按照说明下载模型并将模型保存在 checkpoints 文件夹中。

ocr.pytorch 库地址:https://github.com/courao/ocr.pytorch

代码如下:

# adapted from this source: https://github.com/courao/ocr.pytorch
%load_ext autoreload
%autoreload 2
import os
from ocr import ocr
import time
import shutil
import numpy as np
import pathlib
from PIL import Image
from glob import glob
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
import pytesseract

def single_pic_proc(image_file):
    image = np.array(Image.open(image_file).convert('RGB'))
    result, image_framed = ocr(image)
    return result,image_framed

image_files = glob('./input_images/*.*')
result_dir = './output_images_with_boxes/'

# If the output folder exists we will remove it and redo it.
if os.path.exists(result_dir):
    shutil.rmtree(result_dir)
os.mkdir(result_dir)

for image_file in sorted(image_files):
    result, image_framed = single_pic_proc(image_file) # detecting and recognizing the text
    filename = pathlib.Path(image_file).name
    output_file = os.path.join(result_dir, image_file.split('/')[-1])
    txt_file = os.path.join(result_dir, image_file.split('/')[-1].split('.')[0]+'.txt')
    txt_f = open(txt_file, 'w')
    Image.fromarray(image_framed).save(output_file)
    for key in result:
        txt_f.write(result[key][1]+'\n')
    txt_f.close()

设置输入和输出文件夹,接着遍历所有输入图像(转换后的 pdf 幻灯片),然后通过 single_pic_proc() 函数运行 OCR 模块中的检测和识别模型,最后将输出保存到输出文件夹。

其中检测继承(inherit)了 Pytorch CTPN 模型,识别继承了 Pytorch CRNN 模型,两者都存在于 OCR 模块中。

示例输出

代码如下:

import cv2 as cv

output_dir = pathlib.Path("./output_images_with_boxes")

# image = cv.imread(str(np.random.choice(list(output_dir.iterdir()),1)[0]))
image = cv.imread(f"{output_dir}/image7.png")
size_reshaped = (int(image.shape[1]),int(image.shape[0]))
image = cv.resize(image, size_reshaped)
cv.imshow("image", image)
cv.waitKey(0)
cv.destroyAllWindows()

下图左为原始 pdf 幻灯片,图右为转录后的输出文本,转录后的准确率非常高。

文本识别输出如下:

filename = f"{output_dir}/image7.txt"
with open(filename, "r") as text:
    for line in text.readlines():
        print(line.strip("\n"))

通过上述方法,最终你可以得到一个非常强大的工具来转录各种文档,从检测和识别手写笔记到检测和识别照片中的随机文本。拥有自己的 OCR 工具来处理一些文本内容,这比依赖外部软件来转录文档要好的多。

原文链接:https://towardsdatascience.com/faster-notes-with-python-and-deep-learning-b713bbb3c186

相关推荐

Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)

在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...

Connect 2.0来了,还有Nuke和Maya新集成

ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...

Magicgui:不会GUI编程也能轻松构建Python GUI应用

什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...

Python入坑系列:桌面GUI开发之Pyside6

阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...

Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI

通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...

pyside2的基础界面(pyside2显示图片)

今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...

Python GUI开发:打包PySide2应用(python 打包pyc)

之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...

使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂

PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...

pycharm中conda解释器无法配置(pycharm安装的解释器不能用)

之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...

Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建

Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...

Python操作系统资源管理与监控(python调用资源管理器)

在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...

本地部署开源版Manus+DeepSeek创建自己的AI智能体

1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...

一文教会你,搭建AI模型训练与微调环境,包学会的!

一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...

使用scikit-learn为PyTorch 模型进行超参数网格搜索

scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...