百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

又有免费GPU资源了:可直接跑Jupyter Notebook,还支持断点续命

itomcoil 2025-03-26 13:06 22 浏览

羊毛栗 发自 凹非寺

量子位 报道 | 公众号 QbitAI



又有新的GPU资源可以免费用了。

福利来自一家叫做Paperspace的云计算公司,他们提供了名叫Gradient的服务:大家都可以用云端GPU,直接跑Jupyter Notebook,不需要付费。

系统预装了PyTorch、TensorFlow、Keras等等许多主流机器学习框架,用起来几乎不会有任何障碍。训练、推理、部署全部支持,还可以把自己的项目公开分享出来。

振奋人心的消息,在Reddit上获得了400+热度。

有人说,这个工具可以解决Colab的许多问题,先举一个例子:

Colab每次关掉都要重新把所有东西装一遍,但Notebook可以一直用的。(@dkobran)

一键运行,一键训练,一键部署

只要用GitHub账号注册一下Paperspace,就可以进到Gradient服务的页面:



就像开头说的那样,可以运行Jupyter Notebook,可以训练模型,还可以部署。

运行一个项目

在这个部分,官方提供了许多样本项目,覆盖各种主流框架,可从中任选一个项目:



再选一个免费的GPU资源:



选好之后,点击“创建Notebook”。一旦创建完毕,系统便会自动开始运行项目。

当然,随时可以按停,随时可以继续。

在免费服务里,每次最多跑6小时就会自动关闭,但并没有限制次数,断了还可以继续跑。

目前,免费的计算资源有这些:

另外,付费的GPU资源,也没有贵到不可接受:



其实运行一个项目,倒未必需要多大的算力。

但别忘了,Gradient还支持训练。

训练一个模型

只要用自己的Github账号授权一下,就能直接把那里的repo搬过来用了。

并且,Gradient里集合了许多公开数据集,也可以直接用到自己的项目里。

部署一个算法

根据官网介绍,只要点击push to deploy按钮,就可以一键把算法部署成API,直接能用的那一种。

现在已经做到的功能有这些:

· 与TensorFlow集成在一起了,但也可以轻松扩展,来支持其他的模型和数据。· 有多种GPU和CPU可以用来部署。· 支持多实例部署,可以自动平衡负载。· 每个部署,都有自己专用的安全端点URL。· 可以通过Gradient CLI、Web UI/API来访问,也可以从你的自定义应用来访问。

为啥不用Colab?

面对这个直击灵魂的问题,一个高分回答 (@dkobran) 在这里:

有几个原因。

一是Colab用的是Google Drive,虽然方便但很慢。比如,训练集常常包含了大量的小文件,特别是图像数据集。Colab要提取这些数据,就一点一点爬。这样对MNIST这种小数据集来说还可以,适合做些玩玩的项目;但要训练更专业的模型,做更有趣的研究,就不太够了。

二是Notebook是完全持久的。如果用Colab,每次打开Notebook都要把所有东西重装一次。

三是Colab的实例可能跑着跑着就关了,之前的工作就丢了。而Gradient可以保证跑完整个session。

另外,Gradient支持在同一环境里添加更多存储,添加高端专用GPU。训练一个复杂的模型,比如要训练一两天、数据集有1TB的那种,也完全可以。还可以一键部署,把模型直接变成API,Colab是做不到的。

这里还提供了大量的ML模板,不论是用TensorFlow、PyTorch、MXNet、Chainer还是CNTK做的,都可以找到。许多公开数据集,系统也收录了,可以直接用进项目里。

这有可能是个官方答案,但也确实击中了许多网友柔软的内心:

答得好。关上Colab是史上最烦的事情了。(@kindnesd99)

如果一个目录下面的文件太多,Colab很容易超时,对图像工作太不友好了。(@zalamandagora)

Colab甚至都没到超时那一步,就直接读取失败,死在OSError 5之类的错误上了。(@Exepony)

所以,你也来试一下吧。

Gradient传送门:

https://www.paperspace.com/console/gradient

量子位 QbitAI · 头条号签约作者

关注我们,第一时间获知前沿科技动态

相关推荐

CentOS7服务器,这样搭建Tensorflow很快!我可以提前去吃饭了

CentOS7搭建Tensorflow框架凡是我相信的,我都做了;凡是我做了的事,都是全身心地投入去做的。WhateverIbelieved,Idid;andwhateverIdid,...

python2.0和python3.0的区别(python2.7和3.7哪个好)

Python3.0是Python语言的一次重大升级,与Python2.x系列存在许多不兼容的改动。以下是两者核心区别的全面总结,按重要性和使用频率排序:一、最关键的破坏性变更特性Pyth...

体验无GIL的自由线程Python:Python 3.13 新特征之一

全局解释器锁(GIL,GlobalInterpreterLock)是Python中备受争议的特性之一。它的主要作用是确保Python是一种线程安全的编程语言,防止多个线程同时访问和修改同一...

Python 3.8异步并发编程指南(python异步调用)

有效的提高程序执行效率的两种方法是异步和并发,Golang,node.js之所以可以有很高执行效率主要是他们的协程和异步并发机制。实际上异步和并发是每一种现代语言都在追求的特性,当然Python也不例...

Python测试框架pytest入门基础(pytest框架搭建)

Pytest简介Pytestisamaturefull-featuredPythontestingtoolthathelpsyouwritebetterprograms.T...

Python学不会来打我(8)字符串string类型深度解析

2025年全球开发者调查显示,90%的Python项目涉及字符串处理,而高效使用字符串可提升代码效率40%。本文系统拆解字符串核心操作,涵盖文本处理、数据清洗、模板生成等八大场景,助你掌握字符串编程精...

windows使用pyenv安装多python版本环境

官方的介绍。pyenvletsyoueasilyswitchbetweenmultipleversionsofPython.It’ssimple,unobtrusive,an...

Python 中 base64 编码与解码(Python 中 base64 编码与解码生成)

base64是经常使用的一种加密方式,在Python中有专门的库支持。本文主要介绍在Python2和Python3中的使用区别:在Python2环境:Python2.7.16(d...

Python项目整洁的秘诀:深入理解__init__.py文件

当你发现项目中import语句越来越混乱时,问题可能出在缺少这个关键文件上作为一名Python开发者,我曾深陷项目结构混乱的困境。直到真正理解了__init__.py文件的价值,我的代码世界才变得井然...

如何把一个Python应用程序装进Docker

准备容器无处不在,但是如何在Docker容器中运行Python应用程序呢?这篇文章将告诉你怎么做!如果您想知道,这些示例需要Python3.x。在深入讨论容器之前,让我们进一步讨论一下我们想要封装的...

python中数值比较大小的8种经典比较方法,不允许你还不知道

在Python中比较数值大小是基础但重要的操作。以下是8种经典比较方法及其应用场景,从基础到进阶的完整指南:1.基础比较运算符Python提供6种基础比较运算符:a,b=5,3...

Python程序员必看3分钟掌握if语句10个神技,第5个99%的人不知道

同事因为写错一个if被开除?全网疯传的Python避坑指南,看完我连夜改了代码!一、新手必踩的3大天坑(附救命代码)技巧1:缩进踩坑事件ifTrue:print("这样写必报错!...

为什么Python里遍历字符串比列表慢?3个底层原因揭秘

用字符串处理文本时,你可能正悄悄浪费性能。在日常Python开发中,我们经常需要遍历字符串和列表。但你是否注意过,当处理海量数据时,遍历字符串的速度明显比列表慢?这背后隐藏着Python设计的深层逻辑...

记录Python3.7.4更新到Python.3.7.8

Python官网Python安装包下载下载文件名称运行后选择升级选项等待安装安装完毕打开IDLE使用Python...

Python3中最常用的5种线程锁你会用吗

前言本章节将继续围绕threading模块讲解,基本上是纯理论偏多。对于日常开发者来讲很少会使用到本章节的内容,但是对框架作者等是必备知识,同时也是高频的面试常见问题。私信小编01即可获取大量Pyth...