百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

使用PyTorch进行知识蒸馏的代码示例

itomcoil 2024-12-15 13:58 40 浏览

随着机器学习模型的复杂性和能力不断增加。提高大型复杂模型在小数据集性能的一种有效技术是知识蒸馏,它包括训练一个更小、更有效的模型来模仿一个更大的“教师”模型的行为。

在本文中,我们将探索知识蒸馏的概念,以及如何在PyTorch中实现它。我们将看到如何使用它将一个庞大、笨重的模型压缩成一个更小、更高效的模型,并且仍然保留原始模型的准确性和性能。

我们首先定义知识蒸馏要解决的问题。

我们训练了一个大型深度神经网络来执行复杂的任务,比如图像分类或机器翻译。这个模型可能有数千层和数百万个参数,这使得它很难部署在现实应用程序、边缘设备等中。并且这个超大的模型还需要大量的计算资源来运行,这使得它在一些资源受限的平台上无法工作。

解决这个问题的一种方法是使用知识蒸馏将大模型压缩成较小的模型。这个过程包括训练一个较小的模型来模仿给定任务中大型模型的行为。

我们将使用来自Kaggle的胸部x光数据集进行肺炎分类来进行知识蒸馏的示例。我们使用的数据集被组织成3个文件夹(train, test, val),并包含每个图像类别的子文件夹(Pneumonia/Normal)。共有5,863张x射线图像(JPEG)和2个类别(肺炎/正常)。

比较一下这两个类的图片:

数据的加载和预处理与我们是否使用知识蒸馏或特定模型无关,代码片段可能如下所示:

transforms_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
transforms_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
train_data = ImageFolder(root=train_dir, transform=transforms_train)
test_data = ImageFolder(root=test_dir, transform=transforms_test)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
test_loader = DataLoader(test_data, batch_size=32, shuffle=True)

教师模型

在这个背景中教师模型我们使用Resnet-18并且在这个数据集上进行了微调。

import torch
import torch.nn as nn
import torchvision
class TeacherNet(nn.Module):
def __init__(self):
super().__init__()
self.model = torchvision.models.resnet18(pretrained=True)
for params in self.model.parameters():
params.requires_grad_ = False
n_filters = self.model.fc.in_features
self.model.fc = nn.Linear(n_filters, 2)
def forward(self, x):
x = self.model(x)
return x

微调训练的代码如下

def train(model, train_loader, test_loader, optimizer, criterion, device):
dataloaders = {'train': train_loader, 'val': test_loader}
for epoch in range(30):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in tqdm.tqdm(dataloaders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

这是一个标准的微调训练步骤,训练后我们可以看到该模型在测试集上达到了91%的准确性,这也就是我们没有选择更大模型的原因,因为作为测试91的准确率已经足够作为基类模型来使用了。

我们知道模型有1170万个参数,因此不一定能够适应边缘设备或其他特定场景。

学生模型

我们的学生是一个更浅的CNN,只有几层和大约100k个参数。

class StudentNet(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 4, kernel_size=3, padding=1),
nn.BatchNorm2d(4),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc = nn.Linear(4 * 112 * 112, 2)
def forward(self, x):
out = self.layer1(x)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out

看代码就非常的简单,对吧。

如果我可以简单地训练这个更小的神经网络,我为什么还要费心进行知识蒸馏呢?我们最后会附上我们通过超参数调整等手段从头训练这个网络的结果最为对比。

但是现在我们继续我们的知识蒸馏的步骤

知识蒸馏训练

训练的基本步骤是不变的,但是区别是如何计算最终的训练损失,我们将使用教师模型损失,学生模型的损失和蒸馏损失一起来计算最终的损失。

class DistillationLoss:
def __init__(self):
self.student_loss = nn.CrossEntropyLoss()
self.distillation_loss = nn.KLDivLoss()
self.temperature = 1
self.alpha = 0.25
def __call__(self, student_logits, student_target_loss, teacher_logits):
distillation_loss = self.distillation_loss(F.log_softmax(student_logits / self.temperature, dim=1),
F.softmax(teacher_logits / self.temperature, dim=1))
loss = (1 - self.alpha) * student_target_loss + self.alpha * distillation_loss
return loss

损失函数是下面两个东西的加权和:

  • 分类损失,称为student_target_loss
  • 蒸馏损失,学生对数和教师对数之间的交叉熵损失

简单的讲,我们的教师模型需要教导学生如何“思考”的,这就是指的是它的不确定性;例如,如果教师模型的最终输出概率是[0.53,0.47],我们希望学生也得到同样类似结果,这些预测之间的差异就是蒸馏损失。

为了控制损失,还有有两个主要参数:

  • 蒸馏损失的权重:0意味着我们只考虑蒸馏损失,反之亦然。
  • 温度:衡量教师预测的不确定性。

在上面的要点中,alpha和temperature的值都是根据我们尝试过一些组合得到的最佳结果的值。

结果对比

这是这个实验的表格摘要。

我们可以清楚地看到使用更小(99.14%),更浅的CNN所获得的巨大好处:与无蒸馏训练相比,准确率提升了10点,并且比Resnet-18快11倍!也就是说,我们的小模型真的从大模型中学到了有用的东西。

作者:Alessandro Lamberti

相关推荐

selenium(WEB自动化工具)

定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...

开发利器丨如何使用ELK设计微服务中的日志收集方案?

【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...

高并发系统设计:应对每秒数万QPS的架构策略

当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...

2025 年每个 JavaScript 开发者都应该了解的功能

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...

JavaScript Array 对象

Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...

Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战

刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...

动力节点最新JavaScript教程(高级篇),深入学习JavaScript

JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...

一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code

当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...

「晚安·好梦」努力只能及格,拼命才能优秀

欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...

JavaScript 中 some 与 every 方法的区别是什么?

大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...

10个高效的Python爬虫框架,你用过几个?

小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...

12个高效的Python爬虫框架,你用过几个?

实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...

pip3 install pyspider报错问题解决

运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...

PySpider框架的使用

PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...

「机器学习」神经网络的激活函数、并通过python实现激活函数

神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...