使用PyTorch进行知识蒸馏的代码示例
itomcoil 2024-12-15 13:58 30 浏览
随着机器学习模型的复杂性和能力不断增加。提高大型复杂模型在小数据集性能的一种有效技术是知识蒸馏,它包括训练一个更小、更有效的模型来模仿一个更大的“教师”模型的行为。
在本文中,我们将探索知识蒸馏的概念,以及如何在PyTorch中实现它。我们将看到如何使用它将一个庞大、笨重的模型压缩成一个更小、更高效的模型,并且仍然保留原始模型的准确性和性能。
我们首先定义知识蒸馏要解决的问题。
我们训练了一个大型深度神经网络来执行复杂的任务,比如图像分类或机器翻译。这个模型可能有数千层和数百万个参数,这使得它很难部署在现实应用程序、边缘设备等中。并且这个超大的模型还需要大量的计算资源来运行,这使得它在一些资源受限的平台上无法工作。
解决这个问题的一种方法是使用知识蒸馏将大模型压缩成较小的模型。这个过程包括训练一个较小的模型来模仿给定任务中大型模型的行为。
我们将使用来自Kaggle的胸部x光数据集进行肺炎分类来进行知识蒸馏的示例。我们使用的数据集被组织成3个文件夹(train, test, val),并包含每个图像类别的子文件夹(Pneumonia/Normal)。共有5,863张x射线图像(JPEG)和2个类别(肺炎/正常)。
比较一下这两个类的图片:
数据的加载和预处理与我们是否使用知识蒸馏或特定模型无关,代码片段可能如下所示:
transforms_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
transforms_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
train_data = ImageFolder(root=train_dir, transform=transforms_train)
test_data = ImageFolder(root=test_dir, transform=transforms_test)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
test_loader = DataLoader(test_data, batch_size=32, shuffle=True)
教师模型
在这个背景中教师模型我们使用Resnet-18并且在这个数据集上进行了微调。
import torch
import torch.nn as nn
import torchvision
class TeacherNet(nn.Module):
def __init__(self):
super().__init__()
self.model = torchvision.models.resnet18(pretrained=True)
for params in self.model.parameters():
params.requires_grad_ = False
n_filters = self.model.fc.in_features
self.model.fc = nn.Linear(n_filters, 2)
def forward(self, x):
x = self.model(x)
return x
微调训练的代码如下
def train(model, train_loader, test_loader, optimizer, criterion, device):
dataloaders = {'train': train_loader, 'val': test_loader}
for epoch in range(30):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in tqdm.tqdm(dataloaders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
这是一个标准的微调训练步骤,训练后我们可以看到该模型在测试集上达到了91%的准确性,这也就是我们没有选择更大模型的原因,因为作为测试91的准确率已经足够作为基类模型来使用了。
我们知道模型有1170万个参数,因此不一定能够适应边缘设备或其他特定场景。
学生模型
我们的学生是一个更浅的CNN,只有几层和大约100k个参数。
class StudentNet(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 4, kernel_size=3, padding=1),
nn.BatchNorm2d(4),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc = nn.Linear(4 * 112 * 112, 2)
def forward(self, x):
out = self.layer1(x)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
看代码就非常的简单,对吧。
如果我可以简单地训练这个更小的神经网络,我为什么还要费心进行知识蒸馏呢?我们最后会附上我们通过超参数调整等手段从头训练这个网络的结果最为对比。
但是现在我们继续我们的知识蒸馏的步骤
知识蒸馏训练
训练的基本步骤是不变的,但是区别是如何计算最终的训练损失,我们将使用教师模型损失,学生模型的损失和蒸馏损失一起来计算最终的损失。
class DistillationLoss:
def __init__(self):
self.student_loss = nn.CrossEntropyLoss()
self.distillation_loss = nn.KLDivLoss()
self.temperature = 1
self.alpha = 0.25
def __call__(self, student_logits, student_target_loss, teacher_logits):
distillation_loss = self.distillation_loss(F.log_softmax(student_logits / self.temperature, dim=1),
F.softmax(teacher_logits / self.temperature, dim=1))
loss = (1 - self.alpha) * student_target_loss + self.alpha * distillation_loss
return loss
损失函数是下面两个东西的加权和:
- 分类损失,称为student_target_loss
- 蒸馏损失,学生对数和教师对数之间的交叉熵损失
简单的讲,我们的教师模型需要教导学生如何“思考”的,这就是指的是它的不确定性;例如,如果教师模型的最终输出概率是[0.53,0.47],我们希望学生也得到同样类似结果,这些预测之间的差异就是蒸馏损失。
为了控制损失,还有有两个主要参数:
- 蒸馏损失的权重:0意味着我们只考虑蒸馏损失,反之亦然。
- 温度:衡量教师预测的不确定性。
在上面的要点中,alpha和temperature的值都是根据我们尝试过一些组合得到的最佳结果的值。
结果对比
这是这个实验的表格摘要。
我们可以清楚地看到使用更小(99.14%),更浅的CNN所获得的巨大好处:与无蒸馏训练相比,准确率提升了10点,并且比Resnet-18快11倍!也就是说,我们的小模型真的从大模型中学到了有用的东西。
作者:Alessandro Lamberti
相关推荐
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
-
在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...
- Connect 2.0来了,还有Nuke和Maya新集成
-
ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
-
什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...
- Python入坑系列:桌面GUI开发之Pyside6
-
阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
-
通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...
- pyside2的基础界面(pyside2显示图片)
-
今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...
- Python GUI开发:打包PySide2应用(python 打包pyc)
-
之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
-
PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
-
之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
-
Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...
- Python操作系统资源管理与监控(python调用资源管理器)
-
在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...
- 本地部署开源版Manus+DeepSeek创建自己的AI智能体
-
1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...
- 一文教会你,搭建AI模型训练与微调环境,包学会的!
-
一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...
- 使用scikit-learn为PyTorch 模型进行超参数网格搜索
-
scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...
- 如何Keras自动编码器给极端罕见事件分类
-
全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...
- 一周热门
- 最近发表
-
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
- Connect 2.0来了,还有Nuke和Maya新集成
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
- Python入坑系列:桌面GUI开发之Pyside6
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
- pyside2的基础界面(pyside2显示图片)
- Python GUI开发:打包PySide2应用(python 打包pyc)
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)