百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

用Python 实现任意区域的快速文字识别(OCR)操作

itomcoil 2024-12-15 13:58 35 浏览

引言

最近聊到一个关于图像文字识别的需求,在工作、生活中常常会用到,比如 票据、漫画、扫描件、照片的文本提取

小编基于 PyQt + labelme + PaddleOCR 写了一个桌面端的OCR工具,用于快速实现图片中 文本区域自动检测+文本自动识别

识别效果如下图所示:

▲OCR工具识别效果

所有框选区域为OCR算法自动检测,右侧列表有每个框对应的文字内容;点击右侧“识别结果”中的文本记录,然后点击“复制到剪贴板”即可复制该文本内容。

功能列表

  • 文本区域检测+文字识别
  • 文本区域可视化
  • 文字内容列表
  • 图像、文件夹加载
  • 图像滚轮缩放查看
  • 绘制区域、编辑区域
  • 复制所选文本识别结果

OCR部分

图像文字检测+文字识别算法,主要借助 paddleocr 实现。

创建或者选择一个虚拟环境,安装需要用到的第三方库。

conda create -n ocr
conda activate ocr

安装框架

如果你没有NVIDIA GPU,或GPU不支持CUDA,可以安装CPU版本:

# CPU版本
pip install paddlepaddle==2.1.0 -i https://mirror.baidu.com/pypi/simple 

如果你的GPU安装过CUDA9或CUDA10,cuDNN 7.6+,可以选择下面这个GPU版本:

# GPU版本
python3 -m pip install paddlepaddle-gpu==2.1.0 -i https://mirror.baidu.com/pypi/simple

安装 PaddleOCR

安装paddleocr:

pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本

版面分析,需要安装 Layout-Parser:

pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl

测试安装是否成功

安装完成后,测试一张图片 --image_dir ./imgs/11.jpg ,采用中英文检测+方向分类器+识别全流程:

paddleocr --image_dir ./imgs/11.jpg --use_angle_cls true --use_gpu false

输出一个list:

在python中调用

from paddleocr import PaddleOCR, draw_ocr

# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, lang="ch")  # need to run only once to download and load model into memory
img_path = './imgs/11.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)

输出结果是一个list,每个item包含了文本框,文字和识别置信度:

[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]] [[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]] [[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]] ......

界面部分

界面部分基于pyqt5实现,其中pyqt GUI程序开发入门和环境配置,详见一篇博客(具体见文末)。

主要步骤:

界面布局设计

在QtDesigner中拖拽控件,完成程序界面布局,并保存 *.ui 文件。

利用 pyuic 自动生成界面代码

在 pycharm 的项目文件结构中找到 *.ui 文件,右键——External Tools——pyuic,会在ui文件同级目录下自动生成界面 ui 的 Python 代码。

编写界面业务类

业务类 MainWindow 实现程序逻辑和算法功能,与前面第2步生成的ui实现解耦,避免每次修改ui文件会影响业务代码。ui界面上的控件可以通过 self._ui.xxxObjectName 访问。

class MainWindow(QMainWindow):
 FIT_WINDOW, FIT_WIDTH, MANUAL_ZOOM = 0, 1, 2

 def __init__(self):
  super().__init__()  # 调用父类构造函数,创建QWidget窗体
  self._ui = Ui_MainWindow()  # 创建ui对象
  self._ui.setupUi(self)  # 构造ui
  self.setWindowTitle(__appname__)

  # 加载默认配置
  config = get_config()
  self._config = config    
  
  # 单选按钮组
        self.checkBtnGroup = QButtonGroup(self)
        self.checkBtnGroup.addButton(self._ui.checkBox_ocr)
        self.checkBtnGroup.addButton(self._ui.checkBox_det)
        self.checkBtnGroup.addButton(self._ui.checkBox_recog)
        self.checkBtnGroup.addButton(self._ui.checkBox_layoutparser)
        self.checkBtnGroup.setExclusive(True)     

实现界面业务逻辑

对主界面上的按钮、列表、绘图控件进行 信号槽连接 。自定义的槽函数不用专门声明,如果是自定义的信号,需要在类__init__()前加上 yourSignal= pyqtSignal(args)

这里以按钮响应函数、列表响应函数为例。按钮点击的信号是 clicked ,listWidget列表切换选择的信号是 itemSelectionChanged

# 按钮响应函数
self._ui.btnOpenImg.clicked.connect(self.openFile)
self._ui.btnOpenDir.clicked.connect(self.openDirDialog)
self._ui.btnNext.clicked.connect(self.openNextImg)
self._ui.btnPrev.clicked.connect(self.openPrevImg)
self._ui.btnStartProcess.clicked.connect(self.startProcess)
self._ui.btnCopyAll.clicked.connect(self.copyToClipboard)
self._ui.btnSaveAll.clicked.connect(self.saveToFile)
self._ui.listWidgetResults.itemSelectionChanged.connect(self.onItemResultClicked)

5. 运行看看效果

运行 python main.py 即可启动GUI程序。

打开图片→选择语言模型ch(中文)→选择文本检测+识别→点击开始,检测完的文本区域会自动画框,并在右侧识别结果——文本Tab页的列表中显示。

所有检测出文本的区域列表,在识别结果——区域Tab页:

由于时间有限,软件细节功能还需进一步完善,欢迎感兴趣的朋友共同探讨。

参考来源:快学Python

相关推荐

Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)

在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...

Connect 2.0来了,还有Nuke和Maya新集成

ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...

Magicgui:不会GUI编程也能轻松构建Python GUI应用

什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...

Python入坑系列:桌面GUI开发之Pyside6

阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...

Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI

通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...

pyside2的基础界面(pyside2显示图片)

今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...

Python GUI开发:打包PySide2应用(python 打包pyc)

之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...

使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂

PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...

pycharm中conda解释器无法配置(pycharm安装的解释器不能用)

之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...

Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建

Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...

Python操作系统资源管理与监控(python调用资源管理器)

在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...

本地部署开源版Manus+DeepSeek创建自己的AI智能体

1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...

一文教会你,搭建AI模型训练与微调环境,包学会的!

一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...

使用scikit-learn为PyTorch 模型进行超参数网格搜索

scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...