百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

神器!使用Python 轻松识别验证码

itomcoil 2025-04-27 14:18 17 浏览

前言

在我们进行自动化测试的过程中,免不了要在登录时遇到验证码,很多时候我们都是只能找开发要万能验证码或者暂时关闭验证码这个功能,但是有时候我们必须要验证码是否能够正常生成,所以在这个时候,我们需要做的就是输入验证码,但是验证码这个东西是随机生成的,不是每一次都一样,所以我们还是需要识别然后输入,脚本是没有眼睛的,只能通过代码来进行识别,所以本文就来给大家介绍一下如何使用Python来轻松识别数字验证码。

安装Python库和软件环境

验证码识别需要用到一些Python库和软件环境,下面将介绍它们的安装步骤。

  1. 安装Tesseract OCR

它是一个开源的光学字符识别引擎,用于识别验证码中的文本内容,能够识别70多种语言的文本,并为开发者提供简单易用的API。可以通过以下链接下载和安装:
https://github.com/tesseract-ocr/tesseract
。在Windows系统下可以下载exe文件进行安装。

注:Tesseract安装完成后需要将tesseract.exe文件路径加入系统的环境变量,否则无法在Python脚本中调用。

  1. 所需Python库

验证码识别需要使用的Python库包括:pillow(PIL)pytesseractopencv-python。pillow为Python自带的标准库,其它库可以使用pip命令自动安装:

pythonpip install pytesseract
pip install opencv-python

识别简单的数字验证码

  1. 准备验证码图片

首先,我们需要准备一些验证码图片。可以在网络上搜索验证码图片进行下载,或者使用Python的爬虫程序去爬取目标网站的验证码。这里我们先手动下载一个简单的数字验证码图片,保存为“test.jpg”。

  1. 加载验证码图片

我们可以使用Pillow库(Python Imaging Library)加载验证码图片。Pillow库可以读取和处理不同类别的图片格式,如jpg、png、bmp等等。代码如下:

pythonfrom PIL import Image
img = Image.open('test.jpg')
img.show()
  1. 识别验证码

使用pytesseract库,我们可以很容易地把图片中的数字识别出来。pytesseract库依赖于Tesseract OCR引擎,能够处理各种难度的验证码,如数字、字母、汉字、倾斜、变形等等。代码如下:

pythonimport pytesseract
text = pytesseract.image_to_string(Image.open('test.jpg'), lang='eng')
print(text)

这段代码的意思是用pytesseract库将图片中的字符串转换为字符。lang参数可以指定识别的语言类型,这里我们使用了eng,表示英文。如果验证码是汉字,设置为chi_sim即可。

识别数字字母混合的验证码

当验证码中既包含数字又包含字母时,需要对识别的方法进行修改,下面介绍一种简单的处理方法,即通过二值化和降噪处理来增加识别率。

二值化处理

二值化处理就是将图片中的所有像素转换为黑白两种颜色。对于验证码图片,我们可以将其转换为黑白灰度图像,便于后续的处理。代码如下:

pythonimport cv2
img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
retval, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('Image', threshold)
cv2.waitKey(0)
cv2.destroyAllWindows()

这段代码用OpenCV库将图片读取为灰度图像,并进行二值化处理。其中,127是阈值,值越小,黑色部分就越多,白色部分就越少。运行后可以得到二值化后的图片。

降噪处理

在二值化后,图片中仍有一些噪点和干扰线条。如果不处理这些噪声,将会影响后续的字符识别,因此需要进行降噪处理,将图片中的噪点和干扰线条消除。代码如下:

pythonimport cv2
img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
retval, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
blur = cv2.GaussianBlur(threshold,(5,5),0)
cv2.imshow('Image', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

这段代码使用高斯滤波函数对图片进行平滑处理,消除噪声和干扰线条。其中(5,5)指定核的大小,值越大,平滑效果越明显。运行后可以得到处理后的图片。

识别验证码

对于数字和字母混合的验证码,我们需要对每个字符进行识别。可以采用字符分割的方法,将验证码图片分割成单个字符图片,再进行字符识别。代码如下:

pythonimport pytesseract
import cv2
img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
retval, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
blur = cv2.GaussianBlur(threshold, (5,5), 0)
contours, hierarchy = cv2.findContours(blur, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
count = 0
for contour in contours:
    (x,y,w,h) = cv2.boundingRect(contour)
    if w > 10 and h > 10:
        roi = blur[y:y+h, x:x+w]
        cv2.imwrite(str(count)+'.jpg', roi)
        text = pytesseract.image_to_string(roi, lang='eng')
        print(text)
        count += 1
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

这段代码先对图片进行二值化和降噪处理,然后使用findContours函数找到并分割出每个字符的边缘轮廓。再使用boundingRect函数得到每个字符的位置和大小,并使用image_to_string函数对每个字符进行字符识别。运行代码后,可以看到输出结果为分割出的每个字符及其识别结果。

总结

本文介绍了如何使用 Python 和相关库来识别数字验证码。通过这种方法,我们可以实现验证码的自动识别,用于自动化测试、爬虫程序或其他需要验证码处理的场景。在实际应用中,可以根据具体的需求对识别方法进行进一步优化和调整,以获得更好的识别效果。

相关推荐

最强聚类模型,层次聚类 !!_层次聚类的优缺点

哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...

python决策树用于分类和回归问题实际应用案例

决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...

Python教程(四十五):推荐系统-个性化推荐算法

今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...

简单学Python——NumPy库7——排序和去重

NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...

PyTorch实战:TorchVision目标检测模型微调完

PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...

C4.5算法解释_简述c4.5算法的基本思想

C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...

Python中的数据聚类及可视化分析实践

探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...

用Python来统计大乐透号码的概率分布

用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...

python:支持向量机监督学习算法用于二分类和多分类问题示例

监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...

25个例子学会Pandas Groupby 操作

groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...

数据挖掘流程_数据挖掘流程主要有哪些步骤

数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...

使用Python寻找图像最常见的颜色_python 以图找图

如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...

财务预算分析全网最佳实践:从每月分析到每天分析

原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...

常用数据工具去重方法_数据去重公式

在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...

Python教程(四十):PyTorch深度学习-动态计算图

今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...