百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Oracle监听日志分析(oracle10g监听日志)

itomcoil 2025-05-02 11:05 20 浏览

1.把监听日志和脚本放到一个目录

yuyuz-mac:analyze-listenerlog yuyuz$ pwd
/Users/yuyuz/python/analyze-listenerlog
yuyuz-mac:analyze-listenerlog yuyuz$ ls
listener.log	lsnrlog.py

2.执行脚本

yuyuz-mac:analyze-listenerlog yuyuz$ python lsnrlog.py 
提取到的成功时间戳数量: 1920
提取到的失败时间戳数量: 15081
提取到的总时间戳数量: 17001
HTML 文件生成成功
yuyuz-mac:analyze-listenerlog yuyuz$ ls
connection_analysis.html	listener.log			lsnrlog.py

3.查看结果

支持区域放大/查看数据/线图柱图切换

4.代码

import re
from datetime import datetime
from pyecharts import options as opts
from pyecharts.charts import Line, Page


def parse_log(log_text):
    """
    解析日志文本,提取包含CONNECT_DATA字段行的时间戳、SERVICE、HOST和IP,并区分成功和失败连接
    :param log_text: 日志文本
    :return: 成功时间戳列表、失败时间戳列表、总时间戳列表、SERVICE信息列表、HOST信息列表、IP信息列表
    """
    success_timestamps = []
    failure_timestamps = []
    total_timestamps = []
    services = []
    hosts = []
    ips = []
    pattern = r'(\d{2}-[A-Z]{3}-\d{4} \d{2}:\d{2}:\d{2})|(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2})'
    service_pattern = r'SERVICE_NAME=(\w+)'
    host_pattern = r'HOST=(\w+)'
    ip_pattern = r'HOST=(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})'

    for line in log_text.split('\n'):
        if 'CONNECT_DATA' in line:
            match = re.search(pattern, line)
            if match:
                timestamp_str = match.group(0)
                try:
                    if '-' in timestamp_str[0:3]:
                        timestamp = datetime.strptime(timestamp_str, '%d-%b-%Y %H:%M:%S')
                    else:
                        timestamp = datetime.strptime(timestamp_str, '%Y-%m-%dT%H:%M:%S')
                    total_timestamps.append(timestamp)
                    if line.strip().endswith('0'):
                        success_timestamps.append(timestamp)
                    else:
                        failure_timestamps.append(timestamp)

                    service_match = re.search(service_pattern, line)
                    host_match = re.search(host_pattern, line)
                    ip_match = re.search(ip_pattern, line)

                    service = service_match.group(1) if service_match else None
                    host = host_match.group(1) if host_match else None
                    ip = ip_match.group(1) if ip_match else None

                    services.append((timestamp, service))
                    hosts.append((timestamp, host))
                    ips.append((timestamp, ip))
                except ValueError:
                    print(f"无法解析时间戳: {timestamp_str}")
    print(f"提取到的成功时间戳数量: {len(success_timestamps)}")
    print(f"提取到的失败时间戳数量: {len(failure_timestamps)}")
    print(f"提取到的总时间戳数量: {len(total_timestamps)}")
    return success_timestamps, failure_timestamps, total_timestamps, services, hosts, ips


def count_connections(timestamps, interval):
    """
    统计不同时间间隔的连接数
    :param timestamps: 时间戳列表
    :param interval: 时间间隔,如 'H' 表示小时,'T' 表示分钟,'S' 表示秒
    :return: 时间间隔和对应的连接数
    """
    counts = {}
    for timestamp in timestamps:
        if interval == 'H':
            key = timestamp.replace(minute=0, second=0, microsecond=0).strftime('%Y-%m-%d %H:00:00')
        elif interval == 'T':
            key = timestamp.replace(second=0, microsecond=0).strftime('%Y-%m-%d %H:%M:00')
        elif interval == 'S':
            key = timestamp.replace(microsecond=0).strftime('%Y-%m-%d %H:%M:%S')
        if key in counts:
            counts[key] += 1
        else:
            counts[key] = 1
    return sorted(counts.items())


def count_by_attribute(data, interval, attribute):
    """
    按指定属性统计不同时间间隔的连接数
    :param data: 包含时间戳和属性的元组列表
    :param interval: 时间间隔,如 'H' 表示小时,'T' 表示分钟,'S' 表示秒
    :param attribute: 属性名称
    :return: 以属性为键,时间间隔和对应连接数为值的字典
    """
    counts = {}
    for timestamp, attr in data:
        if attr is None:
            continue
        if interval == 'H':
            key = timestamp.replace(minute=0, second=0, microsecond=0).strftime('%Y-%m-%d %H:00:00')
        elif interval == 'T':
            key = timestamp.replace(second=0, microsecond=0).strftime('%Y-%m-%d %H:%M:00')
        elif interval == 'S':
            key = timestamp.replace(microsecond=0).strftime('%Y-%m-%d %H:%M:%S')
        if attr not in counts:
            counts[attr] = {}
        if key in counts[attr]:
            counts[attr][key] += 1
        else:
            counts[attr][key] = 1
    for attr in counts:
        counts[attr] = sorted(counts[attr].items())
    return counts


def create_line_chart(success_data, failure_data, total_data, interval):
    """
    创建线图
    :param success_data: 成功连接的时间间隔和对应的连接数
    :param failure_data: 失败连接的时间间隔和对应的连接数
    :param total_data: 总连接的时间间隔和对应的连接数
    :param interval: 时间间隔,如 '小时','分钟','秒'
    :return: 线图对象
    """
    x_data = sorted(set([item[0] for item in success_data + failure_data + total_data]))
    success_y_data = [next((item[1] for item in success_data if item[0] == x), 0) for x in x_data]
    failure_y_data = [next((item[1] for item in failure_data if item[0] == x), 0) for x in x_data]
    total_y_data = [next((item[1] for item in total_data if item[0] == x), 0) for x in x_data]

    line = (
        Line(init_opts=opts.InitOpts(bg_color="#f5f5f5", width="100%"))
        .add_xaxis(x_data)
        .add_yaxis(
            series_name=f"成功连接总数/{interval}",
            y_axis=success_y_data,
            label_opts=opts.LabelOpts(is_show=False),
            linestyle_opts=opts.LineStyleOpts(width=2, color="#228B22"),
            symbol="circle",
            symbol_size=6,
            itemstyle_opts=opts.ItemStyleOpts(color="#228B22")
        )
        .add_yaxis(
            series_name=f"失败连接总数/{interval}",
            y_axis=failure_y_data,
            label_opts=opts.LabelOpts(is_show=False),
            linestyle_opts=opts.LineStyleOpts(width=2, color="#FF0000"),
            symbol="circle",
            symbol_size=6,
            itemstyle_opts=opts.ItemStyleOpts(color="#FF0000")
        )
        .add_yaxis(
            series_name=f"总连接数/{interval}",
            y_axis=total_y_data,
            label_opts=opts.LabelOpts(is_show=False),
            linestyle_opts=opts.LineStyleOpts(width=2, color="#FF6347"),
            symbol="circle",
            symbol_size=6,
            itemstyle_opts=opts.ItemStyleOpts(color="#FF6347")
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title=f"连接情况统计/{interval}",
                title_textstyle_opts=opts.TextStyleOpts(font_size=20, color="#333")
            ),
            toolbox_opts=opts.ToolboxOpts(is_show=True),
            xaxis_opts=opts.AxisOpts(
                name=interval,
                axislabel_opts=opts.LabelOpts(rotate=45, font_size=12, color="#666"),
                name_textstyle_opts=opts.TextStyleOpts(font_size=14, color="#333")
            ),
            yaxis_opts=opts.AxisOpts(
                name="连接数",
                axislabel_opts=opts.LabelOpts(font_size=12, color="#666"),
                name_textstyle_opts=opts.TextStyleOpts(font_size=14, color="#333")
            ),
            tooltip_opts=opts.TooltipOpts(trigger="axis"),
            legend_opts=opts.LegendOpts(
                type_="scroll",
                orient="vertical",
                pos_left="right",
                pos_top="middle",
                textstyle_opts=opts.TextStyleOpts(font_size=8, color="#333")
            )
        )
    )
    return line


def create_attribute_line_chart(counts, interval, attribute):
    """
    创建按属性统计的线图
    :param counts: 以属性为键,时间间隔和对应连接数为值的字典
    :param interval: 时间间隔,如 '小时','分钟','秒'
    :param attribute: 属性名称
    :return: 线图对象
    """
    all_x_data = set()
    for data in counts.values():
        for x, _ in data:
            all_x_data.add(x)
    x_data = sorted(all_x_data)

    line = Line(init_opts=opts.InitOpts(bg_color="#f5f5f5", width="100%"))
    line.add_xaxis(x_data)

    for attr, data in counts.items():
        y_data = [next((item[1] for item in data if item[0] == x), 0) for x in x_data]
        line.add_yaxis(
            series_name=f"{attr}/{interval}",
            y_axis=y_data,
            label_opts=opts.LabelOpts(is_show=False),
            linestyle_opts=opts.LineStyleOpts(width=2),
            symbol="circle",
            symbol_size=6
        )

    line.set_global_opts(
        title_opts=opts.TitleOpts(
            title=f"{attribute} 连接情况统计/{interval}",
            title_textstyle_opts=opts.TextStyleOpts(font_size=20, color="#333")
        ),
        toolbox_opts=opts.ToolboxOpts(is_show=True),
        xaxis_opts=opts.AxisOpts(
            name=interval,
            axislabel_opts=opts.LabelOpts(rotate=45, font_size=12, color="#666"),
            name_textstyle_opts=opts.TextStyleOpts(font_size=14, color="#333")
        ),
        yaxis_opts=opts.AxisOpts(
            name="连接数",
            axislabel_opts=opts.LabelOpts(font_size=12, color="#666"),
            name_textstyle_opts=opts.TextStyleOpts(font_size=14, color="#333")
        ),
        tooltip_opts=opts.TooltipOpts(trigger="axis"),
        legend_opts=opts.LegendOpts(
            type_="scroll",
            orient="vertical",
            pos_left="right",
            pos_top="middle",
            textstyle_opts=opts.TextStyleOpts(font_size=8, color="#333")
        )
    )
    return line


def main():
    """
    主函数,从文件读取日志并生成包含多个线图的网页
    """
    try:
        with open('listener.log', 'r', encoding='utf-8') as file:
            log_text = file.read()
        success_timestamps, failure_timestamps, total_timestamps, services, hosts, ips = parse_log(log_text)

        # 统计每小时、每分钟、每秒的成功、失败和总连接数
        intervals = ['H', 'T', 'S']
        interval_names = ['小时', '分钟', '秒']
        page = Page()

        for interval, interval_name in zip(intervals, interval_names):
            hourly_success_data = count_connections(success_timestamps, interval)
            hourly_failure_data = count_connections(failure_timestamps, interval)
            hourly_total_data = count_connections(total_timestamps, interval)
            hourly_chart = create_line_chart(hourly_success_data, hourly_failure_data, hourly_total_data, interval_name)
            page.add(hourly_chart)

        # 按SERVICE、HOST、IP统计并绘制线图
        attributes = [('SERVICE', services), ('HOST', hosts), ('IP', ips)]
        for attribute_name, attribute_data in attributes:
            for interval, interval_name in zip(intervals, interval_names):
                counts = count_by_attribute(attribute_data, interval, attribute_name)
                chart = create_attribute_line_chart(counts, interval_name, attribute_name)
                page.add(chart)

        page.render("connection_analysis.html")

        # 添加版权信息到 HTML 文件
        copyright_info = '<div style="text-align: center; padding: 20px; font-size: 12px;">声明:仅用作兴趣爱好和测试使用,请勿商用,不承担任何商业责任。--张宇--</div>'
        with open('connection_analysis.html', 'a', encoding='utf-8') as f:
            f.write(copyright_info)

        print("HTML 文件生成成功")
    except FileNotFoundError:
        print("未找到 listener.log 文件,请确保文件存在。")
    except Exception as e:
        print(f"发生错误: {e}")


if __name__ == "__main__":
    main()

相关推荐

selenium(WEB自动化工具)

定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...

开发利器丨如何使用ELK设计微服务中的日志收集方案?

【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...

高并发系统设计:应对每秒数万QPS的架构策略

当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...

2025 年每个 JavaScript 开发者都应该了解的功能

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...

JavaScript Array 对象

Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...

Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战

刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...

动力节点最新JavaScript教程(高级篇),深入学习JavaScript

JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...

一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code

当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...

「晚安·好梦」努力只能及格,拼命才能优秀

欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...

JavaScript 中 some 与 every 方法的区别是什么?

大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...

10个高效的Python爬虫框架,你用过几个?

小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...

12个高效的Python爬虫框架,你用过几个?

实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...

pip3 install pyspider报错问题解决

运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...

PySpider框架的使用

PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...

「机器学习」神经网络的激活函数、并通过python实现激活函数

神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...