我的模型我做主02——训练自己的大模型:简易入门指南
itomcoil 2025-05-02 18:57 18 浏览
模型训练往往需要较高的配置,为了满足友友们的好奇心,这里我们不要内存,不要gpu,用最简单的方式,让大家感受一下什么是模型训练。基于你的硬件配置,我们可以设计一个完全在CPU上运行的简易模型训练方案。以下是具体步骤:
环境准备
这里以mac为例,其他系统原理类似,也可不使用miniconda,本文主要集中在训练代码和推理代码上。
安装Miniconda(推荐)
# 下载Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
# 安装
bash Miniconda3-latest-MacOSX-arm64.sh
创建虚拟环境
conda create -n tinyai python=3.9
conda activate tinyai
安装PyTorch
# 安装pytorch,也可通过官网选择合适的安装语句
pip install torch torchvision torchaudio
超简易模型训练方案
纯CPU训练微型文本模型
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# 超简单数据集
class TextDataset(Dataset):
def __init__(self):
self.data = ["hello world", "deep learning", "apple silicon", "metal acceleration"]
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
text = self.data[idx]
# 简单字符级编码
x = [ord(c) for c in text[:-1]]
y = [ord(c) for c in text[1:]]
return torch.tensor(x), torch.tensor(y)
# 超简单模型
class TinyLM(nn.Module):
def __init__(self, vocab_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, 32)
self.rnn = nn.RNN(32, 64, batch_first=True)
self.fc = nn.Linear(64, vocab_size)
def forward(self, x):
x = self.embed(x)
out, _ = self.rnn(x)
return self.fc(out)
def custom_collate_fn(batch):
# batch是包含多个(__getitem__返回结果)的列表
x_batch, y_batch = zip(*batch)
# 找到本批次中的最大长度
max_len = max(len(x) for x in x_batch)
# 填充每个样本
x_padded = torch.stack([
torch.cat([x, torch.zeros(max_len - len(x), dtype=torch.long)])
for x in x_batch
])
y_padded = torch.stack([
torch.cat([y, torch.zeros(max_len - len(y), dtype=torch.long)])
for y in y_batch
])
return x_padded, y_padded
# 训练设置
dataset = TextDataset()
# loader = DataLoader(dataset, batch_size=2)
# 然后修改DataLoader
loader = DataLoader(dataset, batch_size=2, collate_fn=custom_collate_fn)
model = TinyLM()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
# 训练循环
for epoch in range(10):
for x, y in loader:
optimizer.zero_grad()
output = model(x)
loss = criterion(output.view(-1, 128), y.view(-1))
loss.backward()
optimizer.step()
print(f"Epoch {epoch}, Loss: {loss.item():.4f}")
# 保存模型和tokenizer(虽然我们用的是简单编码)
torch.save(model.state_dict(), 'tinylm.pth')
# 同时保存词汇表信息(这里只是示例,实际字符编码是固定的)
import pickle
with open('char_vocab.pkl', 'wb') as f:
pickle.dump({'vocab_size': 128}, f) # ASCII字符范围
模型推理
创建一个新的Python文件inference.py:
import torch
import torch.nn as nn
class TinyLM(nn.Module):
def __init__(self, vocab_size=128):
super().__init__()
self.embed = nn.Embedding(vocab_size, 32)
self.rnn = nn.RNN(32, 64, batch_first=True)
self.fc = nn.Linear(64, vocab_size)
def forward(self, x):
x = self.embed(x)
out, _ = self.rnn(x)
return self.fc(out)
# 加载模型
model = TinyLM()
model.load_state_dict(torch.load('tinylm.pth'))
model.eval() # 设置为评估模式
# 简单的字符编码函数
def text_to_tensor(text):
return torch.tensor([[ord(c) for c in text]])
# 推理函数
def generate_text(start_str, length=10):
input_seq = text_to_tensor(start_str)
hidden = None
for _ in range(length):
with torch.no_grad(): # 禁用梯度计算
output = model(input_seq)
# 获取最后一个字符的预测
last_char_logits = output[0, -1, :]
# 选择概率最高的字符
predicted_char = torch.argmax(last_char_logits).item()
# 添加到输入序列中
input_seq = torch.cat([
input_seq,
torch.tensor([[predicted_char]])
], dim=1)
# 将数字转换回字符
generated_text = ''.join([chr(c) for c in input_seq[0].tolist()])
return generated_text
# 使用示例
if __name__ == "__main__":
while True:
seed = input("输入起始字符串(或输入q退出): ")
if seed.lower() == 'q':
break
generated = generate_text(seed, length=20)
print(f"生成结果: {generated}")
运行推理示例
输入起始字符串(或输入q退出): hello
生成结果: hello world deep lear
结果分析
生成的文本无意义
主要原因是模型太小或训练不足,后续的解决方案是增加训练epoch或扩大模型,当然本文的目的就是让大家熟悉一下基本的模型训练和推理流程。
相关推荐
- selenium(WEB自动化工具)
-
定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...
- 开发利器丨如何使用ELK设计微服务中的日志收集方案?
-
【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...
- 高并发系统设计:应对每秒数万QPS的架构策略
-
当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...
- 2025 年每个 JavaScript 开发者都应该了解的功能
-
大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...
- JavaScript Array 对象
-
Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...
- Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战
-
刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...
- 动力节点最新JavaScript教程(高级篇),深入学习JavaScript
-
JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...
- 一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code
-
当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...
- 「晚安·好梦」努力只能及格,拼命才能优秀
-
欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...
- JavaScript 中 some 与 every 方法的区别是什么?
-
大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...
- 10个高效的Python爬虫框架,你用过几个?
-
小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...
- 12个高效的Python爬虫框架,你用过几个?
-
实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...
- pip3 install pyspider报错问题解决
-
运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...
- PySpider框架的使用
-
PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...
- 「机器学习」神经网络的激活函数、并通过python实现激活函数
-
神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)