百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Python强大的内置模块collections

itomcoil 2025-05-03 14:45 18 浏览

1. 模块说明

collections 是 Python 的一个内置模块,所谓内置模块的意思是指 Python 内部封装好的模块,无需安装即可直接使用。

  • collections 包含了一些特殊的容器,针对 Python 内置的容器,例如:list、dict、set、tuple,提供了另一种选择;
  • namedtuple:可以创建包含名称的 tuple;
  • deque:类似于 list 的容器,可以快速的在队列头部和尾部添加、删除元素;
  • OrderedDict:dict的子类,可以记住元素的添加顺序;
  • defaultdict:dict的子类,可以调用提供默认值的函数;
  • Counter:dict的子类,计算可hash的对象;


2. 实战代码

(1). testNamedTuple函数

Python 提供了很多非常好用的基本类型,比如不可变类型 tuple,我们可以轻松地用它来表示一个二元向量。

namedtuple 是一个函数,它用来创建一个自定义的 tuple 对象,并且规定了 tuple 元素的个数,并可以用属性而不是索引来引用 tuple 的某个元素。

如此一来,我们用 namedtuple 可以很方便地定义一种数据类型,它具备 tuple 的不变性,又可以根据属性来引用,使用十分方便。

本示例中我们使用了一个三维坐标 x,y,z 来定义一个 tuple 对象,对象元素有3个,然后通过坐标值来引用相应的值即可。

from collections import namedtuple
from collections import deque
from collections import defaultdict
from collections import OrderedDict
from collections import Counter


def testNamedTuple():
    vector=namedtuple('vector',['x','y','z'])
    flag=vector(3,4,5)
    print(type(flag))
    print(isinstance(flag,vector))
    print(isinstance(flag,tuple)) #通过这里的判定我们就可以知晓它是元组类型
    print(flag.x,flag.y,flag.z)


(2). testDeque函数

deque是栈和队列的一种广义实现,deque是 "double-end queue" 的简称;

deque支持线程安全、有效内存地以近似O(1)的性能在 deque 的两端插入和删除元素,尽管 list 也支持相似的操作,但是它主要在固定长度操作上的优化,从而在 pop(0) 和 insert(0,v)(会改变数据的位置和大小)上有O(n)的时间复杂度。

在数据结构中,我们知道队列和堆栈是两个非常重要的数据类型,一个先进先出,一个后进先出。

在 python 中,使用 list 存储数据时,按索引访问元素很快,但是插入和删除元素就很慢,因为 list 是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向链表结构,非常适合实现队列和堆栈这样的数据结构。

def testDeque():
    list1=[x*x for x in range(101)]
    delist=deque(list1) #对列表进行了一次再处理,让list1列表变成了双向链表结构
    delist.append(1000)#将x添加到deque的右侧
    delist.appendleft(2000)#将x添加到deque的左侧
    delist.pop(1000)#移除和返回deque中最右侧的元素,如果没有元素,将会报出IndexError;
    delist.popleft()#移除和返回deque中最左侧的元素,如果没有元素,将会报出IndexError;
    delist.count(1)#返回deque中元素等于1的个数
    delist.remove(10000)#移除第一次出现的value,如果没有找到,报出ValueError;
    delist.reverse()#反转deque中的元素,并返回None;
    list2=[1,3,4,5]
    delist.extend(list2)#将可迭代变量iterable中的元素添加至deque的右侧
    delist.extendleft(list2)#将变量iterable中的元素添加至deque的左侧,往左侧添加序列的顺序与可迭代变量iterable中的元素相反
    delist.maxlen()#只读的属性,deque的最大长度,如果无解,就返回None
    delist.rotate(1)#从右侧反转n步,如果n为负数,则从左侧反转
    delist.clear()#将deque中的元素全部删除,最后长度为0;


(3). testDefaultdict函数

defaultdict是内置数据类型 dict 的一个子类,基本功能与 dict 一样,只是重写了一个方法__missing__(key)和增加了一个可写的对象变量 default_factory。

使用 dict 字典类型时,如果引用的 key 不存在,就会抛出 KeyError。如果希望 Key 不存在时,返回一个默认值,就可以用 defaultdict。

def testDefaultdict():
    dict1= defaultdict(lambda: 'default') #Key不存在时,返回一个默认值,就可以用default,defaultdict的其他行为跟dict是完全一样的
    dict1["k1"]="v1"
    print(dict1["k2"])

    list2= [('yellow',11),('blue',2),('yellow',3),('blue',4),('red',5),('red',10)]
    dict1 = defaultdict(list)#使用list作为default_factory,很容易将一个key-value的序列转换为一个关于list的词典
    for k,v in list2:
        dict1[k].append(v)
    print(dict1)


(4). testOrderedDict函数

OrderedDict类似于正常的词典,只是它记住了元素插入的顺序,当在有序的词典上迭代时,返回的元素就是它们第一次添加的顺序。这样 dict 就是一个有序的字典。

使用 dict 时,key 是无序的。在对 dict 做迭代时,我们无法确定 key 的顺序。但是如果想要保持 key 的顺序,可以用 OrderedDict。

def testOrderedDict():
    dict1=dict([('aaa', 111), ('ddd',444),('bbb', 222), ('ccc', 333)])
    print(dict1)

    dict2 = OrderedDict([('ddd',444),('aaa', 111), ('bbb', 222), ('ccc', 333)])#OrderedDict的key会按照插入的顺序排列,不是key本身排序
    print(dict2)

    dict3 = {"banana": 33, "apple": 222, "pear": 1, "orange": 4444}
    # dict sorted by key
    dict4=OrderedDict(sorted(dict3.items(), key=lambda t: t[0]))
    print("dict4",dict4)
    # dict sorted by value
    dict5=OrderedDict(sorted(dict3.items(), key=lambda t: t[1]))
    print("dict5",dict5)
    # dict sorted by length of key string
    dict6 = OrderedDict(sorted(dict3.items(), key=lambda t: len(t[0])))
    print("dict6",dict6)
    print(dict6['apple'])


(5). testCounter函数

def testCounter():
    '''counter可以支持方便、快速的计数'''
    str1="abcdefgabcedergeghdjlkabcdefe" #将可迭代的字符串初始化counter
    str2=Counter(str1)
    print(str2) #从输出的内容来看,Counter实际上也是dict的一个子类
    for k,v in str2.items():
        print(k,v)

    dict3 = {"banana": 33, "apple": 222, "pear": 1, "orange": 4444,"apples":2}#将dict初始化counter
    dict4=Counter(dict3)
    print(dict4)
    print(dict4["test"])#Counter对象类似于字典,如果某个项缺失,会返回0,而不是报出KeyError;

    dict5=Counter(high=9,age=33,money=-1)#将args初始化counter
    print(dict5)
    #elements返回一个迭代器,每个元素重复的次数为它的数目,顺序是任意的顺序,如果一个元素的数目少于1,那么elements()就会忽略它;
    list1=list(dict5.elements())
    print(list1)

    #most_common返回一个列表,包含counter中n个最大数目的元素
    #,如果忽略n或者为None,most_common()将会返回counter中的所有元素,元素有着相同数目的将会以任意顺序排列;
    str1 = "abcdefgabcedergeghdjlkabcdefe"
    list1=Counter(str1).most_common(3)
    print(list1)

if __name__ == '__main__':
    # testNamedTuple()
    # testCounter()
    testDefaultdict()
    # testDeque()
    # testOrderedDict()

相关推荐

selenium(WEB自动化工具)

定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...

开发利器丨如何使用ELK设计微服务中的日志收集方案?

【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...

高并发系统设计:应对每秒数万QPS的架构策略

当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...

2025 年每个 JavaScript 开发者都应该了解的功能

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...

JavaScript Array 对象

Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...

Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战

刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...

动力节点最新JavaScript教程(高级篇),深入学习JavaScript

JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...

一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code

当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...

「晚安·好梦」努力只能及格,拼命才能优秀

欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...

JavaScript 中 some 与 every 方法的区别是什么?

大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...

10个高效的Python爬虫框架,你用过几个?

小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...

12个高效的Python爬虫框架,你用过几个?

实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...

pip3 install pyspider报错问题解决

运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...

PySpider框架的使用

PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...

「机器学习」神经网络的激活函数、并通过python实现激活函数

神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...