百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Python强大的内置模块collections

itomcoil 2025-05-03 14:45 11 浏览

1. 模块说明

collections 是 Python 的一个内置模块,所谓内置模块的意思是指 Python 内部封装好的模块,无需安装即可直接使用。

  • collections 包含了一些特殊的容器,针对 Python 内置的容器,例如:list、dict、set、tuple,提供了另一种选择;
  • namedtuple:可以创建包含名称的 tuple;
  • deque:类似于 list 的容器,可以快速的在队列头部和尾部添加、删除元素;
  • OrderedDict:dict的子类,可以记住元素的添加顺序;
  • defaultdict:dict的子类,可以调用提供默认值的函数;
  • Counter:dict的子类,计算可hash的对象;


2. 实战代码

(1). testNamedTuple函数

Python 提供了很多非常好用的基本类型,比如不可变类型 tuple,我们可以轻松地用它来表示一个二元向量。

namedtuple 是一个函数,它用来创建一个自定义的 tuple 对象,并且规定了 tuple 元素的个数,并可以用属性而不是索引来引用 tuple 的某个元素。

如此一来,我们用 namedtuple 可以很方便地定义一种数据类型,它具备 tuple 的不变性,又可以根据属性来引用,使用十分方便。

本示例中我们使用了一个三维坐标 x,y,z 来定义一个 tuple 对象,对象元素有3个,然后通过坐标值来引用相应的值即可。

from collections import namedtuple
from collections import deque
from collections import defaultdict
from collections import OrderedDict
from collections import Counter


def testNamedTuple():
    vector=namedtuple('vector',['x','y','z'])
    flag=vector(3,4,5)
    print(type(flag))
    print(isinstance(flag,vector))
    print(isinstance(flag,tuple)) #通过这里的判定我们就可以知晓它是元组类型
    print(flag.x,flag.y,flag.z)


(2). testDeque函数

deque是栈和队列的一种广义实现,deque是 "double-end queue" 的简称;

deque支持线程安全、有效内存地以近似O(1)的性能在 deque 的两端插入和删除元素,尽管 list 也支持相似的操作,但是它主要在固定长度操作上的优化,从而在 pop(0) 和 insert(0,v)(会改变数据的位置和大小)上有O(n)的时间复杂度。

在数据结构中,我们知道队列和堆栈是两个非常重要的数据类型,一个先进先出,一个后进先出。

在 python 中,使用 list 存储数据时,按索引访问元素很快,但是插入和删除元素就很慢,因为 list 是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向链表结构,非常适合实现队列和堆栈这样的数据结构。

def testDeque():
    list1=[x*x for x in range(101)]
    delist=deque(list1) #对列表进行了一次再处理,让list1列表变成了双向链表结构
    delist.append(1000)#将x添加到deque的右侧
    delist.appendleft(2000)#将x添加到deque的左侧
    delist.pop(1000)#移除和返回deque中最右侧的元素,如果没有元素,将会报出IndexError;
    delist.popleft()#移除和返回deque中最左侧的元素,如果没有元素,将会报出IndexError;
    delist.count(1)#返回deque中元素等于1的个数
    delist.remove(10000)#移除第一次出现的value,如果没有找到,报出ValueError;
    delist.reverse()#反转deque中的元素,并返回None;
    list2=[1,3,4,5]
    delist.extend(list2)#将可迭代变量iterable中的元素添加至deque的右侧
    delist.extendleft(list2)#将变量iterable中的元素添加至deque的左侧,往左侧添加序列的顺序与可迭代变量iterable中的元素相反
    delist.maxlen()#只读的属性,deque的最大长度,如果无解,就返回None
    delist.rotate(1)#从右侧反转n步,如果n为负数,则从左侧反转
    delist.clear()#将deque中的元素全部删除,最后长度为0;


(3). testDefaultdict函数

defaultdict是内置数据类型 dict 的一个子类,基本功能与 dict 一样,只是重写了一个方法__missing__(key)和增加了一个可写的对象变量 default_factory。

使用 dict 字典类型时,如果引用的 key 不存在,就会抛出 KeyError。如果希望 Key 不存在时,返回一个默认值,就可以用 defaultdict。

def testDefaultdict():
    dict1= defaultdict(lambda: 'default') #Key不存在时,返回一个默认值,就可以用default,defaultdict的其他行为跟dict是完全一样的
    dict1["k1"]="v1"
    print(dict1["k2"])

    list2= [('yellow',11),('blue',2),('yellow',3),('blue',4),('red',5),('red',10)]
    dict1 = defaultdict(list)#使用list作为default_factory,很容易将一个key-value的序列转换为一个关于list的词典
    for k,v in list2:
        dict1[k].append(v)
    print(dict1)


(4). testOrderedDict函数

OrderedDict类似于正常的词典,只是它记住了元素插入的顺序,当在有序的词典上迭代时,返回的元素就是它们第一次添加的顺序。这样 dict 就是一个有序的字典。

使用 dict 时,key 是无序的。在对 dict 做迭代时,我们无法确定 key 的顺序。但是如果想要保持 key 的顺序,可以用 OrderedDict。

def testOrderedDict():
    dict1=dict([('aaa', 111), ('ddd',444),('bbb', 222), ('ccc', 333)])
    print(dict1)

    dict2 = OrderedDict([('ddd',444),('aaa', 111), ('bbb', 222), ('ccc', 333)])#OrderedDict的key会按照插入的顺序排列,不是key本身排序
    print(dict2)

    dict3 = {"banana": 33, "apple": 222, "pear": 1, "orange": 4444}
    # dict sorted by key
    dict4=OrderedDict(sorted(dict3.items(), key=lambda t: t[0]))
    print("dict4",dict4)
    # dict sorted by value
    dict5=OrderedDict(sorted(dict3.items(), key=lambda t: t[1]))
    print("dict5",dict5)
    # dict sorted by length of key string
    dict6 = OrderedDict(sorted(dict3.items(), key=lambda t: len(t[0])))
    print("dict6",dict6)
    print(dict6['apple'])


(5). testCounter函数

def testCounter():
    '''counter可以支持方便、快速的计数'''
    str1="abcdefgabcedergeghdjlkabcdefe" #将可迭代的字符串初始化counter
    str2=Counter(str1)
    print(str2) #从输出的内容来看,Counter实际上也是dict的一个子类
    for k,v in str2.items():
        print(k,v)

    dict3 = {"banana": 33, "apple": 222, "pear": 1, "orange": 4444,"apples":2}#将dict初始化counter
    dict4=Counter(dict3)
    print(dict4)
    print(dict4["test"])#Counter对象类似于字典,如果某个项缺失,会返回0,而不是报出KeyError;

    dict5=Counter(high=9,age=33,money=-1)#将args初始化counter
    print(dict5)
    #elements返回一个迭代器,每个元素重复的次数为它的数目,顺序是任意的顺序,如果一个元素的数目少于1,那么elements()就会忽略它;
    list1=list(dict5.elements())
    print(list1)

    #most_common返回一个列表,包含counter中n个最大数目的元素
    #,如果忽略n或者为None,most_common()将会返回counter中的所有元素,元素有着相同数目的将会以任意顺序排列;
    str1 = "abcdefgabcedergeghdjlkabcdefe"
    list1=Counter(str1).most_common(3)
    print(list1)

if __name__ == '__main__':
    # testNamedTuple()
    # testCounter()
    testDefaultdict()
    # testDeque()
    # testOrderedDict()

相关推荐

Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)

在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...

Connect 2.0来了,还有Nuke和Maya新集成

ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...

Magicgui:不会GUI编程也能轻松构建Python GUI应用

什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...

Python入坑系列:桌面GUI开发之Pyside6

阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...

Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI

通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...

pyside2的基础界面(pyside2显示图片)

今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...

Python GUI开发:打包PySide2应用(python 打包pyc)

之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...

使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂

PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...

pycharm中conda解释器无法配置(pycharm安装的解释器不能用)

之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...

Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建

Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...

Python操作系统资源管理与监控(python调用资源管理器)

在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...

本地部署开源版Manus+DeepSeek创建自己的AI智能体

1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...

一文教会你,搭建AI模型训练与微调环境,包学会的!

一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...

使用scikit-learn为PyTorch 模型进行超参数网格搜索

scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...