百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

什么是OpenCV?有哪些基础图像处理操作?

itomcoil 2025-05-08 01:57 17 浏览

一、OpenCV简介

OpenCV是一款由Intel公司俄罗斯团队发起并参与和维护的一个计算机视觉处理开源软件库,支持与计算机视觉和机器学习相关的众多算法,并且正在日益扩展。

1.1 OpenCV的优势:

  1. 编程语言
    OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++ API和Python语言的最佳特性。
  2. 跨平台
    可以在不同的系统平台上使用,包括Windows,Linux,OS X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中
  3. 活跃的开发团队
  4. 丰富的API
    完善的传统计算机视觉算法,涵盖主流的机器学习算法,同时添加了对深度学习的支持。

1.2 OpenCV-Python

OpenCV-Python是一个Python绑定库,旨在解决计算机视觉问题。

Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。

与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。

OpenCV-Python使用Numpy,这是一个高度优化的数据库操作库,具有MATLAB风格的语法。所有OpenCV数组结构都转换为Numpy数组。这也使得与使用Numpy的其他库(如SciPy和Matplotlib)集成更容易。

1.3 OpenCV部署方法

安装OpenCV之前需要先安装numpy, matplotlib。

创建Python虚拟环境cv, 在cv中安装即可。

先安装OpenCV-Python, 由于一些经典的算法被申请了版权,新版本有很大的限制,所以选用3.4.3以下的版本

pip install opencv-python==3.4.2.17

现在可以测试下是否安装成功,运行以下代码无报错则说明安装成功。

import cv2
# 读一个图片并进行显示(图片路径需自己指定)
lena=cv2.imread("1.jpg")
cv2.imshow("image",lena)
cv2.waitKey(0)

如果我们要利用SIFT和SURF等进行特征提取时,还需要安装:

pip install opencv-contrib-python==3.4.2.17

1.4 OpenCV的模块

下图列出了OpenCV中包含的各个模块:

其中core、highgui、imgproc是最基础的模块,该课程主要是围绕这几个模块展开的,分别介绍如下:

  • core模块实现了最核心的数据结构及其基本运算,如绘图函数、数组操作相关函数等。
  • highgui模块实现了视频与图像的读取、显示、存储等接口。
  • imgproc模块实现了图像处理的基础方法,包括图像滤波、图像的几何变换、平滑、阈值分割、形态学处理、边缘检测、目标检测、运动分析和对象跟踪等。

对于图像处理其他更高层次的方向及应用,OpenCV也有相关的模块实现

  • features2d模块用于提取图像特征以及特征匹配,nonfree模块实现了一些专利算法,如sift特征。
  • objdetect模块实现了一些目标检测的功能,经典的基于Haar、LBP特征的人脸检测,基于HOG的行人、汽车等目标检测,分类器使用Cascade Classification(级联分类)和Latent SVM等。
  • stitching模块实现了图像拼接功能。
  • FLANN模块(Fast Library for Approximate Nearest Neighbors),包含快速近似最近邻搜索FLANN 和聚类Clustering算法。
  • ml模块机器学习模块(SVM,决策树,Boosting等等)。
  • photo模块包含图像修复和图像去噪两部分。
  • video模块针对视频处理,如背景分离,前景检测、对象跟踪等。
  • calib3d模块即Calibration(校准)3D,这个模块主要是相机校准和三维重建相关的内容。包含了基本的多视角几何算法,单个立体摄像头标定,物体姿态估计,立体相似性算法,3D信息的重建等等。
  • G-API模块包含超高效的图像处理pipeline引擎

二、图像的基础操作

2.1 图像的IO操作

这里我们会给大家介绍如何读取图像,如何显示图像和如何保存图像。

(1)读取图像

  1. API
cv.imread()

参数:

  • 要读取的图像
  • 读取方式的标志
    • cv.IMREAD*COLOR:以彩色模式加载图像,任何图像的透明度都将被忽略。这是默认参数。
    • cv.IMREAD*GRAYSCALE:以灰度模式加载图像
    • cv.IMREAD_UNCHANGED:包括alpha通道的加载图像模式。
      可以使用1、0或者-1来替代上面三个标志
  • 参考代码
import numpy as np
import cv2 as cv
# 以灰度图的形式读取图像
img = cv.imread('messi5.jpg',0)

注意:如果加载的路径有错误,不会报错,会返回一个None值

(2)显示图像

1 . API

cv.imshow()

参数:

  • 显示图像的窗口名称,以字符串类型表示
  • 要加载的图像

注意:在调用显示图像的API后,要调用cv.waitKey()给图像绘制留下时间,否则窗口会出现无响应情况,并且图像无法显示出来

另外我们也可使用matplotlib对图像进行展示。

  1. 参考代码
# opencv中显示
cv.imshow('image',img)
cv.waitKey(0)
# matplotlib中展示
plt.imshow(img[:,:,::-1])

(3)保存

  1. API
cv.imwrite()

参数:

    • 文件名,要保存在哪里
    • 要保存的图像
  1. 参考代码
cv.imwrite('messigray.png',img)

2.2 绘制几何图形

绘制直线

cv.line(img,start,end,color,thickness)

参数:

  • img:要绘制直线的图像
  • Start,end: 直线的起点和终点
  • color: 线条的颜色
  • Thickness: 线条宽度

绘制圆形

cv.circle(img,centerpoint, r, color, thickness)

参数:

  • img:要绘制圆形的图像
  • Centerpoint, r: 圆心和半径
  • color: 线条的颜色
  • Thickness: 线条宽度,为-1时生成闭合图案并填充颜色

绘制矩形

cv.rectangle(img,leftupper,rightdown,color,thickness)

参数:

  • img:要绘制矩形的图像
  • Leftupper, rightdown: 矩形的左上角和右下角坐标
  • color: 线条的颜色
  • Thickness: 线条宽度

向图像中添加文字

cv.putText(img,text,station, font, fontsize,color,thickness,cv.LINE_AA)

参数:

  • img: 图像
  • text:要写入的文本数据
  • station:文本的放置位置
  • font:字体
  • Fontsize :字体大小

效果展示

我们生成一个全黑的图像,然后在里面绘制图像并添加文字

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# 1 创建一个空白的图像
img = np.zeros((512,512,3), np.uint8)
# 2 绘制图形
cv.line(img,(0,0),(511,511),(255,0,0),5)
cv.rectangle(img,(384,0),(510,128),(0,255,0),3)
cv.circle(img,(447,63), 63, (0,0,255), -1)
font = cv.FONT_HERSHEY_SIMPLEX
cv.putText(img,'OpenCV',(10,500), font, 4,(255,255,255),2,cv.LINE_AA)
# 3 图像展示
plt.imshow(img[:,:,::-1])
plt.title('匹配结果'), plt.xticks([]), plt.yticks([])
plt.show()

结果:

2.3 获取并修改图像中的像素点

我们可以通过行和列的坐标值获取该像素点的像素值。对于BGR图像,它返回一个蓝,绿,红值的数组。对于灰度图像,仅返回相应的强度值。使用相同的方法对像素值进行修改。

import numpy as np
import cv2 as cv
img = cv.imread('messi5.jpg')
# 获取某个像素点的值
px = img[100,100]
# 仅获取蓝色通道的强度值
blue = img[100,100,0]
# 修改某个位置的像素值
img[100,100] = [255,255,255]

2.4 获取图像的属性

图像属性包括行数,列数和通道数,图像数据类型,像素数等。

2.5 图像通道的拆分与合并

有时需要在B,G,R通道图像上单独工作。在这种情况下,需要将BGR图像分割为单个通道。或者在其他情况下,可能需要将这些单独的通道合并到BGR图像。你可以通过以下方式完成。

# 通道拆分
b,g,r = cv.split(img)
# 通道合并
img = cv.merge((b,g,r))

2.6 色彩空间的改变

OpenCV中有150多种颜色空间转换方法。最广泛使用的转换方法有两种,BGR<->Gray和BGR<->HSV。

API:

cv.cvtColor(input_image,flag)

参数:

  • input_image: 进行颜色空间转换的图像
  • flag: 转换类型
    • cv.COLOR_BGR2GRAY : BGR<->Gray
    • cv.COLOR_BGR2HSV: BGR→HSV

相关推荐

selenium(WEB自动化工具)

定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...

开发利器丨如何使用ELK设计微服务中的日志收集方案?

【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...

高并发系统设计:应对每秒数万QPS的架构策略

当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...

2025 年每个 JavaScript 开发者都应该了解的功能

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...

JavaScript Array 对象

Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...

Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战

刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...

动力节点最新JavaScript教程(高级篇),深入学习JavaScript

JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...

一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code

当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...

「晚安·好梦」努力只能及格,拼命才能优秀

欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...

JavaScript 中 some 与 every 方法的区别是什么?

大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...

10个高效的Python爬虫框架,你用过几个?

小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...

12个高效的Python爬虫框架,你用过几个?

实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...

pip3 install pyspider报错问题解决

运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...

PySpider框架的使用

PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...

「机器学习」神经网络的激活函数、并通过python实现激活函数

神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...