百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

基于计算机视觉的棋盘图像识别(基于计算机视觉的棋盘图像识别工具)

itomcoil 2025-05-08 18:59 4 浏览

本期我们将一起学习如何使用计算机视觉技术识别棋子及其在棋盘上的位置

我们利用计算机视觉技术和卷积神经网络(CNN)为这个项目创建分类算法,并确定棋子在棋盘上的位置。最终的应用程序会保存整个图像并可视化的表现出来,同时输出棋盘的2D图像以查看结果。

(左)实时摄像机进给的帧和棋盘的(右)二维图像


01. 数据

我们对该项目的数据集有很高的要求,因为它最终会影响我们的实验结果。我们在网上能找到的国际象棋数据集是使用不同的国际象棋集、不同的摄影机拍摄得到的,这导致我们创建了自己的数据集。我使用国际象棋和摄像机(GoPro Hero6 Black以“第一人称视角”角度)生成了自定义数据集,这使我的模型更加精确。该数据集包含2406张图像,分为13类(请参阅下文)。总结:这花费了我们很多时间,但是这使得训练图像尽可能地接近在应用程序中使用时所看到的图像。

自定义数据集的细分

为了构建该数据集,我首先创建了capture_data.py,当单击S键时,该视频从视频流中获取一帧并将其保存。这个程序使我能够无缝地更改棋盘上的棋子并一遍又一遍地捕获棋盘的图像,直到我建立了大量不同的棋盘配置为止。接下来,我创建了create_data.py,以使用下一部分中讨论的检测技术将其裁剪为单独小块。最后,我通过将裁剪后的图像分成带标签的文件夹来对它们进行分类。


02. 棋盘检测

对于棋盘检测,我想做的事情比使用OpenCV函数findChessboardCorners复杂的多,但又不像CNN那样高级。使用低级和中级计算机视觉技术来查找棋盘的特征,然后将这些特征转换为外边界和64个独立正方形的坐标。该过程以Canny边缘检测和Hough变换生成的相交水平线、垂直线的交点为中心。层次聚类用于按距离对交叉点进行分组,并对各组取平均值以创建最终坐标(请参见下文)。

完整的棋盘检测过程


03. 棋盘分类


项目伊始,我们想使用Keras / TensorFlow创建CNN模型并对棋子进行分类。但是,在创建数据集之后,仅考虑CNN的大小,单靠CNN就无法获得想要的结果。为了克服这一障碍,我利用了ImageDataGenerator和transfer learning,它增加了我的数据并使用了其他预训练的模型作为基础。

创建CNN模型

为了使用GPU,我在云中创建并训练了CNN模型,从而大大减少了训练时间。快速提示:Google Colab是使用GPU快速入门的简便方法。为了提高数据的有效性,我使用了ImageDataGenerator来扩展原始图像并将模型暴露给不同版本的数据。ImageDataGenerator函数针对每个时期随机旋转,重新缩放和翻转(水平)训练数据,从本质上创建了更多数据。尽管还有更多的转换选项,但这些转换选项对该项目最有效。

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
        rotation_range=5,
        rescale=1./255,
        horizontal_flip=True,
        fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255)
train_gen = datagen.flow_from_directory(
    folder + '/train',
    target_size = image_size,
    batch_size = batch_size,
    class_mode = 'categorical',
    color_mode = 'rgb',
    shuffle=True)
test_gen = test_datagen.flow_from_directory(
    folder + '/test',
    target_size = image_size,
    batch_size = batch_size,
    class_mode = 'categorical',
    color_mode = 'rgb',
    shuffle=False)

我们没有从头开始训练模型,而是通过利用预先训练的模型并添加了使用我的自定义数据集训练的顶层模型来实现转移学习。我遵循了典型的转移学习工作流程:

1.从先前训练的模型(VGG16)中获取图层。

from keras.applications.vgg16 import VGG16
model = VGG16(weights='imagenet')
model.summary()

2.冻结他们,以避免破坏他们在训练回合中包含的任何信息。

3.在冻结层的顶部添加了新的可训练层。

from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten
from keras.models import Model
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224,224,3)) 
 
# Freeze convolutional layers from VGG16
for layer in base_model.layers:
    layer.trainable = False
# Establish new fully connected block
x = base_model.output
x = Flatten()(x) 
x = Dense(500, activation='relu')(x) 
x = Dense(500, activation='relu')(x)
predictions = Dense(13, activation='softmax')(x)
# This is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['categorical_accuracy'])

4.在自定义数据集上训练新层。

epochs = 10
history = model.fit(
    train_gen, 
    epochs=epochs,
    verbose = 1,
    validation_data=test_gen)
model.save_weights('model_VGG16.h5')

当我们使用VGG16或VGG19作为预训练模型创建模型时,由于验证精度更高,因此选择了使用VGG16的模型。另外,最佳epochs 是10。任何大于10的数均不会使验证准确性的提高,也不会增加训练与验证准确性之间的差异。总结:转移学习使我们可以充分利用深度学习在图像分类中的优势,而无需大型数据集。


04. 结果

为了更好地可视化验证准确性,我创建了模型预测的混淆矩阵。通过此图表,可以轻松评估模型的优缺点。优点:空-准确率为99%,召回率为100%;白棋和黑棋(WP和BP)-F1得分约为95%。劣势:白骑士(WN)-召回率高(98%),但准确性却很低(65%);白主教(WB)-召回率最低,为74%。

测试数据的混淆矩阵


05. 应用


该应用程序的目标是使用CNN模型并可视化每个步骤的性能。我们创建了cv_chess.py,它清楚地显示了步骤,并创建了cv_chess_functions.py,它显示了每个步骤的详细信息。此应用程序保存实时视频流中的原始帧,每个正方形的64个裁剪图像以及棋盘的最终2D图像。

print('Working...') 
       
# Save the frame to be analyzed        
cv2.imwrite('frame.jpeg', frame)  
      
# Low-level CV techniques (grayscale & blur)        
img, gray_blur = read_img('frame.jpeg') 
       
# Canny algorithm        
edges = canny_edge(gray_blur) 
       
# Hough Transform        
lines = hough_line(edges)   
     
# Separate the lines into vertical and horizontal lines        h_lines, v_lines = h_v_lines(lines) 
       
# Find and cluster the intersecting        
intersection_points = line_intersections(h_lines, v_lines)        points = cluster_points(intersection_points)   
     
# Final coordinates of the board        
points = augment_points(points)       
 
# Crop the squares of the board a organize into a sorted list        x_list = write_crop_images(img, points, 0)        
img_filename_list = grab_cell_files()        img_filename_list.sort(key=natural_keys)   
     
# Classify each square and output the board in Forsyth-Edwards Notation (FEN)        
fen = classify_cells(model, img_filename_list) 
       
# Create and save the board image from the FEN        
board = fen_to_image(fen)      
  
# Display the board in ASCII        
print(board)
# Display and save the chessboard image        
board_image = cv2.imread('current_board.png')        cv2.imshow('current board', board_image)  
      
print('Completed!')

代码链接:
https://github.com/andrewleeunderwood/project_MYM

相关推荐

Excel新函数TEXTSPLIT太强大了,轻松搞定数据拆分!

我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!最近我把WPS软件升级到了版本号:12.1.0.15990的最新版本,最版本已经支持文本拆分函数TEXTSPLIT了,并...

Excel超强数据拆分函数TEXTSPLIT,从入门到精通!

我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!今天跟大家分享的是Excel超强数据拆分函数TEXTSPLIT,带你从入门到精通!TEXTSPLIT函数真是太强大了,轻松...

看完就会用的C++17特性总结(c++11常用新特性)

作者:taoklin,腾讯WXG后台开发一、简单特性1.namespace嵌套C++17使我们可以更加简洁使用命名空间:2.std::variant升级版的C语言Union在C++17之前,通...

plsql字符串分割浅谈(plsql字符集设置)

工作之中遇到的小问题,在此抛出问题,并给出解决方法。一方面是为了给自己留下深刻印象,另一方面给遇到相似问题的同学一个解决思路。如若其中有写的不好或者不对的地方也请不加不吝赐教,集思广益,共同进步。遇到...

javascript如何分割字符串(javascript切割字符串)

javascript如何分割字符串在JavaScript中,您可以使用字符串的`split()`方法来将一个字符串分割成一个数组。`split()`方法接收一个参数,这个参数指定了分割字符串的方式。如...

TextSplit函数的使用方法(入门+进阶+高级共八种用法10个公式)

在Excel和WPS新增的几十个函数中,如果按实用性+功能性排名,textsplit排第二,无函数敢排第一。因为它不仅使用简单,而且解决了以前用超复杂公式才能搞定的难题。今天小编用10个公式,让你彻底...

Python字符串split()方法使用技巧

在Python中,字符串操作可谓是基础且关键的技能,而今天咱们要重点攻克的“堡垒”——split()方法,它能将看似浑然一体的字符串,按照我们的需求进行拆分,极大地便利了数据处理与文本解析工作。基本语...

go语言中字符串常用的系统函数(golang 字符串)

最近由于工作比较忙,视频有段时间没有更新了,在这里跟大家说声抱歉了,我尽快抽些时间整理下视频今天就发一篇关于go语言的基础知识吧!我这我工作中用到的一些常用函数,汇总出来分享给大家,希望对...

无规律文本拆分,这些函数你得会(没有分隔符没规律数据拆分)

今天文章来源于表格学员训练营群内答疑,混合文本拆分。其实拆分不难,只要规则明确就好办。就怕规则不清晰,或者规则太多。那真是,Oh,mygod.如上图所示进行拆分,文字表达实在是有点难,所以小熊变身灵...

Python之文本解析:字符串格式化的逆操作?

引言前面的文章中,提到了关于Python中字符串中的相关操作,更多地涉及到了字符串的格式化,有些地方也称为字符串插值操作,本质上,就是把多个字符串拼接在一起,以固定的格式呈现。关于字符串的操作,其实还...

忘记【分列】吧,TEXTSPLIT拆分文本好用100倍

函数TEXTSPLIT的作用是:按分隔符将字符串拆分为行或列。仅ExcelM365版本可用。基本应用将A2单元格内容按逗号拆分。=TEXTSPLIT(A2,",")第二参数设置为逗号...

Excel365版本新函数TEXTSPLIT,专攻文本拆分

Excel中字符串的处理,拆分和合并是比较常见的需求。合并,当前最好用的函数非TEXTJOIN不可。拆分,Office365于2022年3月更新了一个专业函数:TEXTSPLIT语法参数:【...

站长在线Python精讲使用正则表达式的split()方法分割字符串详解

欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中使用正则表达式的split()方法分割字符串详解》。使用正则表达式分割字符串在Python中使用正则表达式的split(...

Java中字符串分割的方法(java字符串切割方法)

技术背景在Java编程中,经常需要对字符串进行分割操作,例如将一个包含多个信息的字符串按照特定的分隔符拆分成多个子字符串。常见的应用场景包括解析CSV文件、处理网络请求参数等。实现步骤1.使用Str...

因为一个函数strtok踩坑,我被老工程师无情嘲笑了

在用C/C++实现字符串切割中,strtok函数经常用到,其主要作用是按照给定的字符集分隔字符串,并返回各子字符串。但是实际上,可不止有strtok(),还有strtok、strtok_s、strto...