Python和Excel已经互通了,还不赶紧来学习一下
itomcoil 2025-05-10 22:32 1 浏览
Excel是数据分析中最常用的工具,这篇文章将Python与Excel的功能对比介绍如何使用Python通过函数式编程完成Excel中的数据处理及分析工作。在Python中pandas库用于数据处理,从1787页的pandas官网文档中总结出最常用的36个函数,通过这些函数介绍如何通过Python完成数据生成和导入、数据清洗、预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作。
第一章 生成数据表
常见的生成数据表的方法有两种,第一种是导入外部数据,第二种是直接写入数据。 Excel中的“文件”菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入。
Python支持从多种类型的数据导入。在开始使用Python进行数据导入前需要先导入pandas库,为了方便起见,我们也同时导入numpy库。
1. 导入数据表
面分别是从Excel和csv格式文件中导入数据并创建数据表的方法。代码是最简模式,里面有很多可选参数设置,例如列名称、索引列、数据格式等。感兴趣的朋友可以参考pandas的官方文档。
2. 创建数据表
另一种方法是通过直接写入数据来生成数据表,Excel中直接在单元格中输入数据就可以,Python中通过下面的代码来实现。生成数据表的函数是pandas库中的DateFrame函数,数据表一共有6行数据,每行有6个字段。在数据中我们特意设置了一些NA值和有问题的字段,例如包含空格等。后面将在数据清洗步骤进行处理。后面我们将统一以DataFrame的简称df来命名数据表。
这是刚刚创建的数据表,我们没有设置索引列,price字段中包含有NA值,city字段中还包含了一些脏数据。
第2章 数据表检查
本章主要介绍对数据表进行检查。Python中处理的数据量通常会比较大,比如纽约的出租车数据和Citibike的骑行数据,其数据量都在千万级,我们无法一目了然地了解数据表的整体情况,必须要通过一些方法来获得数据表的关键信息。数据表检查的另一个目的是了解数据的概况,例如整个数据表的大小、所占空间、数据格式、是否有空值和重复项和具体的数据内容,为后面的清洗和预处理做好准备。
1. 数据维度(行列)
Excel中可以通过CTRL+向下的光标键,和CTRL+向右的光标键来查看行号和列号。Python中使用shape函数来查看数据表的维度,也就是行数和列数,函数返回的结果(6,6)表示数据表有6行,6列。下面是具体的代码。
2. 数据表信息
使用info函数查看数据表的整体信息,这里返回的信息比较多,包括数据维度、列名称、数据格式和所占空间等信息。
3. 查看数据格式
Excel中通过选中单元格并查看开始菜单中的数值类型来判断数据的格式。Python中使用dtypes函数来返回数据格式。
Dtypes是一个查看数据格式的函数,可以一次性查看数据表中所有数据的格式,也可以指定一列来单独查看。
4. 查看空值
Excel中查看空值的方法是使用“定位条件”功能对数据表中的空值进行定位。“定位条件”在“开始”目录下的“查找和选择”目录中。
Isnull是Python中检验空值的函数,返回的结果是逻辑值,包含空值返回True,不包含则返回False。用户既可以对整个数据表进行检查,也可以单独对某一列进行空值检查。
5. 查看唯一值
Excel中查看唯一值的方法是使用“条件格式”对唯一值进行颜色标记。Python中使用unique函数查看唯一值。
Unique是查看唯一值的函数,只能对数据表中的特定列进行检查。下面是代码,返回的结果是该列中的唯一值。类似与Excel中删除重复项后的结果。
6. 查看数据表数值
Python中的Values函数用来查看数据表中的数值。以数组的形式返回,不包含表头信息。
7. 查看列名称
Colums函数用来单独查看数据表中的列名称。
8. 查看前10行数据
Head函数用来查看数据表中的前N行数据,默认head()显示前10行数据,可以自己设置参数值来确定查看的行数。下面的代码中设置查看前3行的数据。
9. 查看后10行数据
Tail行数与head函数相反,用来查看数据表中后N行的数据,默认tail()显示后10行数据,可以自己设置参数值来确定查看的行数。下面的代码中设置查看后3行的数据。
今天先更新到这里啦,大家伙儿先自行消化下,明天继续。
强迫症学习的同学想多学习找我拿走自己学习就可以啦。
加哟加油!!!
获取方式:
转发+关注啦,最后麻烦私信“学习资料”获取!
私信方式:
第一步,点击头像。
第二部:头像旁边有一个私信按钮,发送{学习资料}即可!
相关推荐
- Python办公自动化系列篇之一:电子表格自动化(EXCEL)
-
作为高效办公自动化领域的主流编程语言,Python凭借其优雅的语法结构、完善的技术生态及成熟的第三方工具库集合,已成为企业数字化转型过程中提升运营效率的理想选择。该语言在结构化数据处理、自动化文档生成...
- Python解决读取excel数据慢的问题
-
前言:在做自动化测试的时候,我思考了一个问题,就是如果我们的测试用例随着项目的推进越来越多时,我们做自动化回归的时间也就越来越长,其中影响自动化测试速度的一个原因就是测试用例的读取问题。用例越多,所消...
- Python高效办公:用自动化脚本批量处理Excel
-
在现代办公环境中,Excel是处理数据的必备工具,但手动操作往往耗时且容易出错。幸运的是,Python提供了强大的库,如`openpyxl`和`pandas`,能够帮助我们高效地自动化处理Exc...
- 【第三弹】用Python实现Excel的vlookup功能
-
今天继续用pandas实现Excel的vlookup功能,假设我们的2个表长成这样:我们希望把Sheet2的部门匹在Sheet1的最后一列。话不多说,先上代码:importpandasaspd...
- 学习Pandas中操作Excel,看这一篇文章就够了
-
在数据分析和处理领域,Excel文件是常见的数据存储格式之一。Pandas库提供了强大的功能来读取、处理和写入Excel文件。本文将详细介绍如何使用Pandas操作Excel文件,包括读取、数据清洗、...
- python学习笔记之pandas读取excel出现的列表显示不全问题
-
今天小编想改正一个表格,按照之前学习的首先导入模块importpandas读取目标excel文件data=pandas.read_excel("C:\\Users\\27195\\Des...
- 使用Python玩转Excel(python-excel)
-
Python读取Excel文件的方法主要有以下几种:Pandas库:Pandas是一个强大的数据处理库,它提供了方便的方法来读取和处理Excel文件。优点:Pandas是一个非常强大的数...
- Python和Excel已经互通了,还不赶紧来学习一下
-
Excel是数据分析中最常用的工具,这篇文章将Python与Excel的功能对比介绍如何使用Python通过函数式编程完成Excel中的数据处理及分析工作。在Python中pandas库用于数据处理,...
- python读excel文件最佳实践?直接请教pandas比gpt还好用
-
前言说到python读取excel文件,网上使用openpyxl的文章一大堆。我自己很少直接使用openpyxl,一般使用pandas间接使用。但如果你不希望引入pandas,该如...
- 用python实现execl表格内容的数据分析与处理
-
可以使用Python中的pandas库来处理Excel表格数据。以下是一个简单的例子:首先,安装pandas库:```pipinstallpandas```然后,读取Excel文件:```impo...
- 从入门到精通:Python处理Excel文件的实用技巧
-
在数据分析和处理的过程中,Excel是一种广泛使用的数据存储和交换格式。Python提供了多个强大的库来处理Excel文件,如pandas、openpyxl和xlrd等。本文将详细介绍...
- Python自动化-Excel:pandas之concat
-
concatimportpandasaspds1=pd.Series([0,1,2],index=['A','B','C'])s2=p...
- Python之Pandas使用系列(八):读写Excel文件的各种技巧
-
介绍:我们将学习如何使用Python操作Excel文件。我们将概述如何使用Pandas加载xlsx文件以及将电子表格写入Excel。如何将Excel文件读取到PandasDataFrame:和前面的...
- Python操作Excel详细教程,值得收藏
-
Python操作Excel是一个非常强大的工具,它可以方便地处理Excel文件,例如读取、写入、格式化单元格等。以下是使用Python操作Excel的详细教程,以Excel文件名为example.xl...
- python中pandas读取excel单列及连续多列数据
-
案例:想获取test.xls中C列、H列以后(当H列后列数未知时)的所有数据。importpandasaspdfile_name=r'D:\test.xls'#表格绝对...
- 一周热门
- 最近发表
- 标签列表
-
- ps像素和厘米换算 (32)
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)