深度聚类的可视化解释
itomcoil 2025-05-24 14:42 13 浏览
作者:Amit Chaudhary
编译:ronghuaiyang
导读
视觉上的自监督学习方法,结合聚类,将无监督转变为有监督。
许多自监督方法使用[pretext tasks](
https://amitness.com/2020/02/illustrated-selfsupervision -learning/)来生成代理标签,并将无监督学习问题转化为有监督学习的问题。一些例子包括旋转预测,图像着色,拼图等。然而,这样的pretext任务是依赖于领域的,需要专业知识来设计它们。
DeepCluster是Facebook AI研究的Caron等人提出的一种自监督方法,带来了一种不同的方法。这种方法不需要特定于领域的知识,可以用于学习缺乏注释数据的场景的深层表示。
DeepCluster
DeepCluster结合了两部分:无监督聚类和深度神经网络。提出了一种端到端联合学习深度神经网络参数及其表示的聚类分配的方法。这些特征被迭代地生成和聚合,最后得到一个训练过的模型和标签作为输出结果。
Deep Cluster Pipeline
现在让我们了解一下深度聚类的pipleline是如何工作的。
简介:
如上图所示,将拍摄未标记的图像并对其应用图像增强。然后,使用AlexNet或vgg16等ConvNet架构作为特征提取器。首先,对ConvNet进行随机权值初始化,并在最终的分类头之前从层中取特征向量。然后使用PCA对特征向量进行降维,同时进行白化和L2归一化。最后,将处理后的特征传递到K-means,对每幅图像进行聚类分配。
这些聚类分配被用作伪标签,并训练ConvNet来预测这些聚类。用交叉熵损失来衡量模型的性能。模型训练了100个epoch,每个epoch进行一次聚类的操作。最后,我们可以将学到的表示用于下游任务。
手把手的例子
让我们通过一个从输入数据到输出标签的整个pipeline的一步步例子来看看DeepCluster是如何实际应用的:
1. 训练数据
我们从ImageNet数据集中提取未标记的图像,该数据集包括130万张图像,均匀分布在1000个类中。这些图像的minibatch为256。
N幅图像的训练集在数学上可以表示为:
2. 图像增强
将各种变换应用于图像,以便学习到的不受增强的影响的特征。分别在训练模型学习表示和将图像表示发送到聚类算法时进行了两种不同的增强:
Case 1: 聚类时使用的变换
当要把模型表示送去进行聚类时,不使用随机增强。图像简单地调整为256×256,并使用中心剪裁得到224×224的图像。然后应用归一化。
在PyTorch中,可以这样实现:
from PIL import Image
import torchvision.transforms as transforms
im = Image.open('dog.png')
t = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
aug_im = t(im)
Case 2: 训练模型时候的变换
当模型在图像和标签上进行训练时,我们使用随机增强。图像裁剪为随机大小和高宽比,然后调整为224*224。然后,图像水平翻转的概率为50%。最后,利用ImageNet均值和方差对图像进行归一化。
在PyTorch中,可以这样实现:
from PIL import Image
import torchvision.transforms as transforms
im = Image.open('dog.png')
t = transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
aug_im = t(im)
Sobel变换
一旦我们得到了归一化的图像,我们就把它转换成灰度。然后,我们使用Sobel滤波器增加图像的局部对比度。
下面是改编自作者实现的简化代码片段,我们可以将它应用到上面得到的增强图像aug_im上。
import torch
import torch.nn as nn
# Fill kernel of Conv2d layer with grayscale kernel
grayscale = nn.Conv2d(3, 1, kernel_size=1, stride=1, padding=0)
grayscale.weight.data.fill_(1.0 / 3.0)
grayscale.bias.data.zero_()
# Fill kernel of Conv2d layer with sobel kernels
sobel = nn.Conv2d(1, 2, kernel_size=3, stride=1, padding=1)
sobel.weight.data[0, 0].copy_(
torch.FloatTensor([[1, 0, -1],
[2, 0, -2],
[1, 0, -1]])
)
sobel.weight.data[1, 0].copy_(
torch.FloatTensor([[1, 2, 1],
[0, 0, 0],
[-1, -2, -1]])
)
sobel.bias.data.zero_()
# Combine the two
combined = nn.Sequential(grayscale, sobel)
# Apply
batch_image = aug_im.unsqueeze(dim=0)
sobel_im = combined(batch_image)
3. 确定聚类的数量(类别数)
要进行聚类,我们需要决定聚类的数量。这将是模型将要训练的类的数量。
默认情况下,ImageNet有1000个类,但是本文使用了10,000个聚类,因为这样可以对未标记的图像进行更细粒度的分组。例如,如果你以前有一组猫和狗,你增加聚类,然后可以创建猫和狗品种的分组。
4. 模型结构
本文主要采用AlexNet架构,由5个卷积层和3个全连接层组成。删除LRN层,使用Batch Normalization。也添加了Dropout。使用的卷积尺寸为2012年比赛所用的:96, 256, 384, 384, 256。
另外,本文还尝试用带batch normalization的vgg16替换AlexNet,以查看对性能的影响。
5. 生成初始的标签
为了生成用于训练的模型的初始标签,我们使用随机权重初始化AlexNet,并去除最后一个完全连接的层FC3。我们在图像上对模型进行前向传递,并在图像上取来自模型的第二个全连接层FC2的特征向量。该特征向量的维数为4096。
对整个数据集的batch中的所有图像重复此过程。因此,如果我们有N幅图像,我们将得到一个图像特征矩阵[N, 4096]。
6. 聚类
在聚类之前,对图像特征矩阵进行降维处理。
在降维方面,采用主成分分析(PCA)方法,将特征从4096维降至256维,然后进行白化。本文使用faiss库来进行大规模操作。Faiss提供了一种有效的PCA实现方法,可以应用于图像特征矩阵x:
import faiss
# Apply PCA with whitening
mat = faiss.PCAMatrix(d_in=4096, d_out=256, eigen_power=-0.5)
mat.train(x)
x_pca = mat.apply_py(x)
然后,对PCA后得到的值进行L2归一化处理。
import numpy as np
norm = np.linalg.norm(x_pca, axis=1)
x_l2 = x_pca / norm[:, np.newaxis]
这样,我们最终得到了N幅图像的矩阵(N, 256)。现在对预处理后的特征进行K-means聚类,得到图像及其对应的聚类。这些聚类将充当伪标签,模型将在其上进行训练。
本文使用Johnson的K-means实现,faiss库里有。因为聚类必须在所有图像上运行,所以它需要花费总训练时间的三分之一。
聚类完成后,将创建新的图像batch,这样来自每个聚类的图像都有相同的被包含的机会。对这些图像进行随机增强。
7. 表示学习
一旦我们有了图像和聚类,我们就像训练常规的监督学习一样训练我们的ConvNet模型。我们使用256的batch size,并使用交叉熵损失来比较模型预测和ground truth聚类标签。模型可以学习到有用的表示。
8. 在模型训练和聚类之间切换
这个模型训练了500个epochs。聚类步骤在每个epoch开始时运行一次,为整个数据集生成伪标签。然后,对所有batch继续使用交叉熵损失对卷积神经网络进行常规训练。本文采用动量为0.9、学习率为0.05、权值衰减为10^-5^的SGD优化器。使用用Pascal P100 GPU进行训练。
DeepCluster的代码实现
官方实现:
https://github.com/facebookresearch/deepcluster,还有AlexNet和Resnet-50的预训练权重:
https://github.com/facebookresearch/deepcluster#pre-trained-models。
英文原文:
https://amitness.com/2020/04/deepcluster/
- 上一篇:计算机视觉项目_2、文档扫描OCR识别
- 下一篇:用python给图片批量打水印
相关推荐
- 最强聚类模型,层次聚类 !!_层次聚类的优缺点
-
哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...
- python决策树用于分类和回归问题实际应用案例
-
决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...
- Python教程(四十五):推荐系统-个性化推荐算法
-
今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...
- 简单学Python——NumPy库7——排序和去重
-
NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...
- PyTorch实战:TorchVision目标检测模型微调完
-
PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...
- C4.5算法解释_简述c4.5算法的基本思想
-
C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...
- Python中的数据聚类及可视化分析实践
-
探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...
- 用Python来统计大乐透号码的概率分布
-
用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...
- python:支持向量机监督学习算法用于二分类和多分类问题示例
-
监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...
- 25个例子学会Pandas Groupby 操作
-
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...
- 数据挖掘流程_数据挖掘流程主要有哪些步骤
-
数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...
- 使用Python寻找图像最常见的颜色_python 以图找图
-
如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...
- 财务预算分析全网最佳实践:从每月分析到每天分析
-
原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...
- 常用数据工具去重方法_数据去重公式
-
在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...
- Python教程(四十):PyTorch深度学习-动态计算图
-
今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)