百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

从头开始简单理解线性回归(附Python 实现)

itomcoil 2025-07-01 20:15 14 浏览

本文讨论了线性回归的基础知识及其在 Python 编程语言中的实现。 线性回归是一种统计方法,用于对因变量与一组给定的自变量之间的关系进行建模。

注意:在本文中,为简单起见,我们将因变量称为标签,将自变量称为特征。 为了提供对线性回归的基本理解,我们从线性回归的最基本版本开始,即Simple linear regression。

简单线性回归

简单线性回归是一种使用单一特征预测标签的方法。假设这两个变量是线性相关的。因此,我们试图找到一个线性函数,它尽可能准确地预测标签值 (y) 作为特征或自变量 (x) 的函数。让我们考虑一个数据集,其中每个特征 x 都有一个标签值 y:

68b56fb0cd5ca_OZFe9y

为了一般性,我们定义: x 为特征向量,即 x = [x_1, x_2, …., x_n], y 为标签向量,即 y = [y_1, y_2, …., y_n] 对于n 个观测值(在上例中, n=10). 上述数据集的散点图如下所示:

我们在小数据集上的 Python 实现

import numpy as np
import matplotlib.pyplot as plt

def estimate_coef(x, y):
 # number of observations/points
 n = np.size(x)

 # mean of x and y vector
 m_x = np.mean(x)
 m_y = np.mean(y)

 # calculating cross-deviation and deviation about x
 SS_xy = np.sum(y*x) - n*m_y*m_x
 SS_xx = np.sum(x*x) - n*m_x*m_x

 # calculating regression coefficients
 b_1 = SS_xy / SS_xx
 b_0 = m_y - b_1*m_x

 return (b_0, b_1)

def plot_regression_line(x, y, b):
 # plotting the actual points as scatter plot
 plt.scatter(x, y, color = "m",
   marker = "o", s = 30)

 # predicted response vector
 y_pred = b[0] + b[1]*x

 # plotting the regression line
 plt.plot(x, y_pred, color = "g")

 # putting labels
 plt.xlabel('x')
 plt.ylabel('y')

 # function to show plot
 plt.show()

def main():
 # observations / data
 x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
 y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])

 # estimating coefficients
 b = estimate_coef(x, y)
 print("Estimated coefficients:\nb_0 = {} \
  \nb_1 = {}".format(b[0], b[1]))

 # plotting regression line
 plot_regression_line(x, y, b)

if __name__ == "__main__":
 main()

输出:

估计系数:
b_0 = -0.0586206896552 
b_1 = 1.45747126437

获得的图表如下所示:

多元线性回归


如前所述,最小二乘法倾向于确定总残差最小的。 我们在这里直接给出结果:

其中 ' 表示矩阵的转置,而 -1 表示逆矩阵。 知道最小二乘估计 b',多元线性回归模型现在可以估计为:

其中是估计的标签向量。 注意:可以在此处找到在多元线性回归中获得最小二乘估计的完整推导。

使用 Scikit-learn 对波士顿房价数据集进行多元线性回归技术的 Python 实现。

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model, metrics

# load the boston dataset
boston = datasets.load_boston(return_X_y=False)

# defining feature matrix(X) and response vector(y)
X = boston.data
y = boston.target

# splitting X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,
             random_state=1)

# create linear regression object
reg = linear_model.LinearRegression()

# train the model using the training sets
reg.fit(X_train, y_train)

# regression coefficients
print('Coefficients: ', reg.coef_)

# variance score: 1 means perfect prediction
print('Variance score: {}'.format(reg.score(X_test, y_test)))

# plot for residual error

## setting plot style
plt.style.use('fivethirtyeight')

## plotting residual errors in training data
plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train,
   color = "green", s = 10, label = 'Train data')

## plotting residual errors in test data
plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test,
   color = "blue", s = 10, label = 'Test data')

## plotting line for zero residual error
plt.hlines(y = 0, xmin = 0, xmax = 50, linewidth = 2)

## plotting legend
plt.legend(loc = 'upper right')

## plot title
plt.title("Residual errors")

## method call for showing the plot
plt.show()

输出:

Coefficients: 
[ -8.80740828e-02 6.72507352e-02 5.10280463e-02 2.18879172e+00 -1.72283734e+01 3.62985243e+00 
2.13933641e-03 -1.36531300e+00 2.88788067e-01 -1.22618657e 
-02 -8.36014969e -01 9.53058061e-03 
-5.05036163e-01]
方差得分:0.720898784611

残留误差图如下所示:

下面给出了线性回归模型对应用它的数据集所做的基本假设:

  • 线性关系:标签和特征变量之间的关系应该是线性的。可以使用散点图测试线性假设。如下所示,第一个图表示线性相关的变量,而第二个和第三个图中的变量很可能是非线性的。因此,第一个图将使用线性回归给出更好的预测。

  • 很少或没有多重共线性:假设数据中很少或没有多重共线性。当特征(或自变量)彼此不独立时,就会出现多重共线性。
  • 很少或没有自相关:另一个假设是数据中很少或没有自相关。当残差彼此不独立时,就会出现自相关。
  • 同方差性:同方差性描述了一种情况,其中误差项(即自变量和因变量之间关系中的“噪声”或随机扰动)在自变量的所有值中都相同。如下所示,图 1 具有同方差性,而图 2 具有异方差性。

相关推荐

selenium(WEB自动化工具)

定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...

开发利器丨如何使用ELK设计微服务中的日志收集方案?

【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...

高并发系统设计:应对每秒数万QPS的架构策略

当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...

2025 年每个 JavaScript 开发者都应该了解的功能

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...

JavaScript Array 对象

Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...

Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战

刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...

动力节点最新JavaScript教程(高级篇),深入学习JavaScript

JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...

一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code

当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...

「晚安·好梦」努力只能及格,拼命才能优秀

欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...

JavaScript 中 some 与 every 方法的区别是什么?

大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...

10个高效的Python爬虫框架,你用过几个?

小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...

12个高效的Python爬虫框架,你用过几个?

实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...

pip3 install pyspider报错问题解决

运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...

PySpider框架的使用

PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...

「机器学习」神经网络的激活函数、并通过python实现激活函数

神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...