MySQL8 窗口函数是真的省事!(mysql中的窗口函数)
itomcoil 2025-07-02 21:22 11 浏览
@[toc]MySQL9 已经出来了,MySQL8 相信也慢慢走进各位小伙伴的工作中了。
MySQL8 还是有很多重量级变化的,一些底层优化大家在使用中有时候不易察觉,但是有一些用法,还是带给我们耳目一新的感觉,今天松哥和大家分享一下 MySQL8 里边的窗口函数。
一 什么是窗口函数
在 MySQL 8 中,窗口函数(Window Functions)是一类强大的分析函数,允许你在查询结果集上执行计算,而无需将数据分组到多个输出行中。窗口函数通常与 OVER() 子句一起使用,以指定数据窗口,即窗口函数将要在其上执行计算的行集。
简单来说,窗口函数的作用类似于在查询中对数据进行分组,不同的是,分组操作会把分组的结果聚合成一条记录,而窗口函数是将结果置于每一条数据记录中。
窗口函数的格式类似下面这样:
<窗口函数> OVER ([PARTITION BY <分组列> [, <分组列>...]]
[ORDER BY <排序列> [ASC | DESC] [, <排序列> [ASC | DESC]]...]
[<rows or range clause>])
- <窗口函数> : 定义要在窗口中计算的聚合函数或其它分析函数,如 COUNT、RANK、SUM 等。
- OVER : 窗口函数的核心关键字。
- PARTITION BY : 定义要用来分组的一组列名。
- ORDER BY : 定义用来排序的一组列名。
- <rows or range clause> : 定义窗口的行集合。默认为 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,表示窗口包括从窗口开始到当前行的所有行。
接下来我们通过一个实际案例来体会下窗口函数。
二 窗口函数实践
2.1 统计成绩和排名
假设我有如下一张表:
我现在想要计算学生的考试总成绩以及单科成绩排名,利用窗口函数就能快速搞定,如下:
SELECT name,subject,score,
SUM(score) OVER(PARTITION by name) AS '总分',
DENSE_RANK() OVER(PARTITION by subject ORDER BY score DESC) AS '学科排名'
from student
和窗口函数相关的就两列:
- sum 求总分,over 中按照 name 进行分组,相当于就是计算每个人的总分。
- dense_rank 是排序,这个函数会考虑并列的情况,但是并列并不影响排序,因为是计算每个人单科排名,所以就按照学科分组之后按照 score 排序。
最终执行结果如下:
2.2 销售统计
假设我有如下一张表:
这是一个名为 sales 的表,其中包含 id(销售记录 ID)、product_id(产品 ID)、sale_date(销售日期)和 amount(销售额)等字段。
现在有如下几个需求,大家把这几个需求搞懂了,基本上窗口函数就会用了。
计算累计销售额
需求:按产品 ID 分组,计算每个产品的累计销售额。
SELECT
id,
product_id,
sale_date,
amount,
SUM(amount) OVER (PARTITION BY product_id ORDER BY sale_date) AS '累计销售额'
FROM
sales;
SUM(amount) OVER (PARTITION BY product_id ORDER BY sale_date) AS '累计销售额' 表示按 product_id 分组,按 sale_date 排序,计算每个产品的累计销售额。
最终查询结果如下:
计算移动平均值
需求:按产品 ID 分组,计算每个产品的最近 3 笔销售记录的移动平均销售额。
SELECT
id,
product_id,
sale_date,
amount,
AVG(amount) OVER (PARTITION BY product_id ORDER BY sale_date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS '移动平均销售额'
FROM
sales;
AVG(amount) OVER (PARTITION BY product_id ORDER BY sale_date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS '移动平均销售额' 表示按 product_id 分组,按 sale_date 排序,计算当前行及前两行的平均销售额。
最终查询结果如下:
计算排名
需求:按产品 ID 分组,计算每个销售记录在该产品中的排名。
SELECT
id,
product_id,
sale_date,
amount,
RANK() OVER (PARTITION BY product_id ORDER BY amount DESC) AS '销售金额排名'
FROM
sales;
RANK() OVER (PARTITION BY product_id ORDER BY amount DESC) AS '销售金额排名' 表示按 product_id 分组,按 amount 降序排序,计算每个销售记录在该产品中的排名。
最终查询结果如下:
计算百分比排名
需求:按产品 ID 分组,计算每个销售记录在该产品中的百分比排名。
SELECT
id,
product_id,
sale_date,
amount,
PERCENT_RANK() OVER (PARTITION BY product_id ORDER BY amount DESC) AS '百分比排名'
FROM
sales;
PERCENT_RANK() OVER (PARTITION BY product_id ORDER BY amount DESC) AS '百分比排名' 表示按 product_id 分组,按 amount 降序排序,计算每个销售记录在该产品中的百分比排名。
最终查询结果如下:
计算前后行的差值
需求:按产品 ID 分组,计算每个销售记录与上一个销售记录之间的销售额差值。
SELECT
id,
product_id,
sale_date,
amount,
LAG(amount, 1) OVER (PARTITION BY product_id ORDER BY sale_date) AS '上个销售记录',
amount - LAG(amount, 1) OVER (PARTITION BY product_id ORDER BY sale_date) AS '差额'
FROM
sales;
LAG(amount, 1) OVER (PARTITION BY product_id ORDER BY sale_date):按 product_id 分组,按 sale_date 排序,获取当前行的上一行的 amount 值。amount - LAG(amount, 1) OVER (PARTITION BY product_id ORDER BY sale_date):计算当前行与上一行的销售额差值。
最终查询结果如下:
计算第一个和最后一个值
需求:按产品 ID 分组,计算每个产品的第一个和最后一个销售日期。
SELECT
product_id,
MIN(sale_date) OVER (PARTITION BY product_id) AS '第一个销售日期',
MAX(sale_date) OVER (PARTITION BY product_id) AS '最后一个销售日期'
FROM
sales;
MIN(sale_date) OVER (PARTITION BY product_id):按product_id分组,计算每个产品的第一个销售日期。MAX(sale_date) OVER (PARTITION BY product_id):按product_id分组,计算每个产品的最后一个销售日期。
最终查询结果如下:
好啦,通过这几个小小案例,小伙伴们明白窗口函数了吧~
相关推荐
- selenium(WEB自动化工具)
-
定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...
- 开发利器丨如何使用ELK设计微服务中的日志收集方案?
-
【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...
- 高并发系统设计:应对每秒数万QPS的架构策略
-
当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...
- 2025 年每个 JavaScript 开发者都应该了解的功能
-
大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...
- JavaScript Array 对象
-
Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...
- Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战
-
刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...
- 动力节点最新JavaScript教程(高级篇),深入学习JavaScript
-
JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...
- 一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code
-
当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...
- 「晚安·好梦」努力只能及格,拼命才能优秀
-
欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...
- JavaScript 中 some 与 every 方法的区别是什么?
-
大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...
- 10个高效的Python爬虫框架,你用过几个?
-
小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...
- 12个高效的Python爬虫框架,你用过几个?
-
实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...
- pip3 install pyspider报错问题解决
-
运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...
- PySpider框架的使用
-
PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...
- 「机器学习」神经网络的激活函数、并通过python实现激活函数
-
神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)