从原理到实战,一份详实的 Scrapy 爬虫教程
itomcoil 2024-12-19 13:44 33 浏览
来源:早起Python
作者:饮马长江
大家好,我是早起。
之前分享了很多 requests 、selenium 的 Python 爬虫文章,本文将从原理到实战带领大家入门另一个强大的框架 Scrapy。如果对Scrapy感兴趣的话,不妨跟随本文动手做一遍!
一、Scrapy框架简介
Scrapy是:由Python语言开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据,只需要实现少量的代码,就能够快速的抓取。
二、运行原理
Scrapy框架的运行原理看下面一张图就够了(事实上原理是比较复杂的,也不是三言两语能够说清楚的,因此感兴趣的读者可以进一步阅读更多的相关文章来了解,本文不做过多讲解)
Scrapy主要包括了以下组件:
- 引擎(Scrapy Engine)
- Item 项目
- 调度器(Scheduler)
- 下载器(Downloader)
- 爬虫(Spiders)
- 项目管道(Pipeline)
- 下载器中间件(Downloader Middlewares)
- 爬虫中间件(Spider Middlewares)
- 调度中间件(Scheduler Middewares)
三. 入门
3.1安装
第一种:在命令行模式下使用pip命令即可安装:
$ pip install scrapy
第二种:首先下载,然后再安装:
$ pip download scrapy -d ./
# 通过指定国内镜像源下载
$pip download -i https://pypi.tuna.tsinghua.edu.cn/simple scrapy -d ./
进入下载目录后执行下面命令安装:
$ pip install Scrapy-1.5.0-py2.py3-none-any.whl
3.2使用
使用大概分为下面四步 1 创建一个scrapy项目
scrapy startproject mySpider
2 生成一个爬虫
scrapy genspider demo "demo.cn"
3 提取数据
完善spider 使用xpath等
4 保存数据
pipeline中保存数据
3.3 程序运行
在命令中运行爬虫
scrapy crawl qb # qb爬虫的名字
在pycharm中运行爬虫
from scrapy import cmdline
cmdline.execute("scrapy crawl qb".split())
四、基本步骤
Scrapy 爬虫框架的具体使用步骤如下:
“选择目标网站定义要抓取的数据(通过Scrapy Items来完成的)编写提取数据的spider执行spider,获取数据数据存储”
五. 目录文件说明
当我们创建了一个scrapy项目后,继续创建了一个spider,目录结构是这样的:
下面来简单介绍一下各个主要文件的作用:
“
scrapy.cfg :项目的配置文件
mySpider/ :项目的Python模块,将会从这里引用代码
mySpider/items.py :项目的目标文件
mySpider/pipelines.py :项目的管道文件
mySpider/settings.py :项目的设置文件
mySpider/spiders/ :存储爬虫代码目录
”
5.1 scrapy.cfg文件
项目配置文件。这个是文件的内容:
# Automatically created by: scrapy startproject
#
# For more information about the [deploy] section see:
# https://scrapyd.readthedocs.io/en/latest/deploy.html
[settings]
default = mySpider.settings
[deploy]
#url = http://localhost:6800/
project = mySpider
5.2 mySpider**/**
项目的Python模块,将会从这里引用代码
5.3 mySpider/items.py
项目的目标文件
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class MyspiderItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
pass
定义scrapy items的模块,示例: name = scrapy.Field()
5.4 mySpider/pipelines.py
项目的管道文件
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
class MyspiderPipeline:
def process_item(self, item, spider):
return item
这个文件也就是我们说的管道,当Item在Spider中被收集之后,它将会被传递到Item Pipeline(管道),这些Item Pipeline组件按定义的顺序处理Item。每个Item Pipeline都是实现了简单方法的Python类,比如决定此Item是丢弃而存储。以下是item pipeline的一些典型应用:
- 验证爬取的数据(检查item包含某些字段,比如说name字段)
- 查重(并丢弃)
- 将爬取结果保存到文件或者数据库中
5.5 mySpider/settings.py
项目的设置文件
# Scrapy settings for mySpider project
...
BOT_NAME = 'mySpider' # scrapy项目名
SPIDER_MODULES = ['mySpider.spiders']
NEWSPIDER_MODULE = 'mySpider.spiders'
.......
# Obey robots.txt rules
ROBOTSTXT_OBEY = False # 是否遵守协议,一般给位false,但是创建完项目是是True,我们把它改为False
# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32 # 最大并发量 默认16
......
#DOWNLOAD_DELAY = 3 # 下载延迟 3秒
# Override the default request headers: # 请求报头,我们打开
DEFAULT_REQUEST_HEADERS = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',
}
# 爬虫中间件
#SPIDER_MIDDLEWARES = {
# 'mySpider.middlewares.MyspiderSpiderMiddleware': 543,
#}
# 下载中间件
#DOWNLOADER_MIDDLEWARES = {
# 'mySpider.middlewares.MyspiderDownloaderMiddleware': 543,
#}
......
# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
#ITEM_PIPELINES = {
# 'mySpider.pipelines.MyspiderPipeline': 300, # 管道
#}
.......
省略号省略代码,一般重要点,给了注释
6.mySpider/spiders/ :存储爬虫代码目录
import scrapy
class DbSpider(scrapy.Spider):
name = 'db'
allowed_domains = ['douban.com'] # 可以修改
start_urls = ['http://douban.com/'] # 开始的url也可以修改
def parse(self, response):
# pass
六. Scrapy shell
Scrapy终端是一个交互终端,我们可以在未启动spider的情况下尝试及调试代码,也可以用来测试XPath或CSS表达式,查看他们的工作方式,方便我们爬取的网页中提取的数据,但是一般使用的不多。感兴趣的查看官方文档:
官方文档
http://scrapy-chs.readthedocs.io/zh_CN/latest/topics/shell.html
Scrapy Shell根据下载的页面会自动创建一些方便使用的对象,例如 Response 对象,以及 Selector 对象 (对HTML及XML内容)。
- 当shell载入后,将得到一个包含response数据的本地 response 变量,输入 response.body将输出response的包体,输出 response.headers 可以看到response的包头。
- 输入 response.selector 时, 将获取到一个response 初始化的类 Selector 的对象,此时可以通过使用 response.selector.xpath()或response.selector.css() 来对 response 进行查询。
- Scrapy也提供了一些快捷方式, 例如 response.xpath()或response.css()同样可以生效(如之前的案例)。
Selectors选择器
“
Scrapy Selectors 内置 XPath 和 CSS Selector 表达式机制
”
Selector有四个基本的方法,最常用的还是xpath:
- xpath(): 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表
- extract(): 序列化该节点为字符串并返回list
- css(): 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表,语法同 BeautifulSoup4
- re(): 根据传入的正则表达式对数据进行提取,返回字符串list列表
七、案例实战
本节,我将使用Scrapy爬取站酷数据作为示例
7.1 案例说明
既然已经初步了解了scrapy的工作流程以及原理,我们来做一个入门的小案例,爬取站酷首页推荐的item信息。如下图所示,一个小方框就是一个item信息。我们要提取每一个item的六个组成部分:
- imgLink(封面图片链接);
- title(标题);
- types(类型);
- vistor(人气);
- comment(评论数);
- likes(推荐人数)
然后只是一个页面的item,我们还要通过翻页实现批量数据采集。
7.2 文件配置
目录结构
在上一篇中我们说明了新建scrapy项目(zcool)和spider项目(zc),这里不再赘述,然后得到我们的目录结构如下图所示:
start.py文件
然后为了方便运行,在zcool目录下新建start文件。并进行初始化设置。
from scrapy import cmdline
cmdline.execute('scrapy crawl zc'.split())
settings.py文件
在这个文件里我们需要做几样设置
避免在程序运行的时候打印log日志信息
LOG_LEVEL = 'WARNING'
ROBOTSTXT_OBEY = False
添加请求头:
打开管道:
item.py文件
import scrapy
class ZcoolItem(scrapy.Item):
# define the fields for your item here like:
imgLink = scrapy.Field() # 封面图片链接
title = scrapy.Field() # 标题
types = scrapy.Field() # 类型
vistor = scrapy.Field() # 人气
comment = scrapy.Field() # 评论数
likes = scrapy.Field() # 推荐人数
7.3 页面数据提取
首先我们在站酷页面使用xpath-helper测试一下:
然后zc.py文件里面初步测试一下:
def parse(self, response):
divList = response.xpath('//div[@class="work-list-box"]/div')
print(len(divList))
运行结果如下图所示:
没有问题,然后我们对各种信息分别解析提取,
def parse(self, response):
divList = response.xpath('//div[@class="work-list-box"]/div')
for div in divList:
imgLink = div.xpath("./div[1]/a/img/@src").extract()[0] # 1.封面图片链接
... 2.title(标题);3 types(类型);4vistor(人气);5comment(评论数) ....
likes = div.xpath("./div[2]/p[3]/span[3]/@title").extract_first() # 6likes(推荐人数)
item = ZcoolItem(imgLink=imgLink,title=title,types=types,vistor=vistor,comment=comment,likes=likes)
yield item
解释: xpath提取数据方法:
S.N.方法 & 描述extract()返回的是符合要求的所有的数据,存在一个列表里。extract_first()返回的hrefs 列表里的第一个数据。get()和extract_first()方法返回的是一样的,都是列表里的第一个数据。getall()和extract()方法一样,返回的都是符合要求的所有的数据,存在一个列表里。
注意:
“
get() 、getall() 方法是新的方法,extract() 、extract_first()方法是旧的方法。extract() 、extract_first()方法取不到就返回None。get() 、getall() 方法取不到就raise一个错误。
”
item实例创建(yield上面一行代码)
这里我们之前在目录文件配置的item文件中已经进行了设置,对于数据存储,我们在爬虫文件中开头要导入这个类:
from zcool.items import ZcoolItem
然后使用yield返回数据。
为什么使用yield而不是return
不能使用return这个无容置疑,因为要翻页,使用return直接退出函数;而对于yield:在调用for的时候,函数内部不会立即执行,只是返回了一个生成器对象。在迭代的时候函数会开始执行,当在yield的时候,会返回当前值(i)。之后的这个函数会在循环中进行,直到没有下一个值。
7.4 翻页实现批量数据采集
通过上面的代码已经可以初步实现数据采集,只不过只有第一页的,如下图所示:
但是我们的目标是100个页面的批量数据采集,所以代码还需要修改。针对翻页这里介绍两种方式:
方式一:我们首先在页面中定位到下一页的按钮,如下图所示:
然后编写如下代码,在for循环完毕后。
next_href = response.xpath("//a[@class='laypage_next']/@href").extract_first()
if next_href:
next_url = response.urljoin(next_href)
print('*' * 60)
print(next_url)
print('*' * 60)
request = scrapy.Request(next_url)
yield request
scrapy.Request(): 把下一页的url传递给Request函数,进行翻页循环数据采集。
https://www.cnblogs.com/heymonkey/p/11818495.html # scrapy.Request()参考链接
注意方式一只有下一页按钮它的href对应属性值和下一页的url一致才行。
方式二:定义一个全局变量count = 0,每爬取一页数据,令其加一,构建新的url,再使用scrapy.Request() 发起请求。
如下图所示:
count = 1
class ZcSpider(scrapy.Spider):
name = 'zc'
allowed_domains = ['zcool.com.cn']
start_urls = ['https://www.zcool.com.cn/home?p=1#tab_anchor'] # 第一页的url
def parse(self, response):
global count
count += 1
for div in divList:
# ...xxx...
yield item
next_url = 'https://www.kuaikanmanhua.com/tag/0?state=1&sort=1&page={}'.format(count)
yield scrapy.Request(next_url)
这两种方式在实际案例中择机采用。
7.5 数据存储
数据存储是在pipline.py中进行的,代码如下:
from itemadapter import ItemAdapter
import csv
class ZcoolPipeline:
def __init__(self):
self.f = open('Zcool.csv','w',encoding='utf-8',newline='') # line1
self.file_name = ['imgLink', 'title','types','vistor','comment','likes'] # line2
self.writer = csv.DictWriter(self.f, fieldnames=self.file_name) # line3
self.writer.writeheader() # line4
def process_item(self, item, spider):
self.writer.writerow(dict(item)) # line5
print(item)
return item # line6
def close_spider(self,spider):
self.f.close()
解释:
- line1: 打开文件,指定方式为写,利用第3个参数把csv写数据时产生的空行消除
- line2: 设置文件第一行的字段名,注意要跟spider传过来的字典key名称相同
- line3: 指定文件的写入方式为csv字典写入,参数1为指定具体文件,参数2为指定字段名
- line4: 写入第一行字段名,因为只要写入一次,所以文件放在__init__里面
- line5: 写入spider传过来的具体数值,注意在spider文件中yield的item,是一个由类创建的实例对象,我们写入数据时,写入的是 字典,所以这里还要转化一下。
- line6: 写入完返回
7.6 程序运行
因为之前创建了start.py文件,并且对它就行了初始化设置,现在运行爬虫程序不需要在控制台中输入命令:
scrapy crawl zc(爬虫项目名)
直运行start.py文件:得到如下结果:
对应于页面:
打开csv文件如下图所示:(由于csv文件在word中乱码了,此处我是用Notepad++打开)
没有问题,数据采集完毕。
7.7. 总结
入门案例,需要细心,主要是基础知识的巩固,以便于为进阶学习做好准备。
相关推荐
- Excel新函数TEXTSPLIT太强大了,轻松搞定数据拆分!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!最近我把WPS软件升级到了版本号:12.1.0.15990的最新版本,最版本已经支持文本拆分函数TEXTSPLIT了,并...
- Excel超强数据拆分函数TEXTSPLIT,从入门到精通!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!今天跟大家分享的是Excel超强数据拆分函数TEXTSPLIT,带你从入门到精通!TEXTSPLIT函数真是太强大了,轻松...
- 看完就会用的C++17特性总结(c++11常用新特性)
-
作者:taoklin,腾讯WXG后台开发一、简单特性1.namespace嵌套C++17使我们可以更加简洁使用命名空间:2.std::variant升级版的C语言Union在C++17之前,通...
- plsql字符串分割浅谈(plsql字符集设置)
-
工作之中遇到的小问题,在此抛出问题,并给出解决方法。一方面是为了给自己留下深刻印象,另一方面给遇到相似问题的同学一个解决思路。如若其中有写的不好或者不对的地方也请不加不吝赐教,集思广益,共同进步。遇到...
- javascript如何分割字符串(javascript切割字符串)
-
javascript如何分割字符串在JavaScript中,您可以使用字符串的`split()`方法来将一个字符串分割成一个数组。`split()`方法接收一个参数,这个参数指定了分割字符串的方式。如...
- TextSplit函数的使用方法(入门+进阶+高级共八种用法10个公式)
-
在Excel和WPS新增的几十个函数中,如果按实用性+功能性排名,textsplit排第二,无函数敢排第一。因为它不仅使用简单,而且解决了以前用超复杂公式才能搞定的难题。今天小编用10个公式,让你彻底...
- Python字符串split()方法使用技巧
-
在Python中,字符串操作可谓是基础且关键的技能,而今天咱们要重点攻克的“堡垒”——split()方法,它能将看似浑然一体的字符串,按照我们的需求进行拆分,极大地便利了数据处理与文本解析工作。基本语...
- go语言中字符串常用的系统函数(golang 字符串)
-
最近由于工作比较忙,视频有段时间没有更新了,在这里跟大家说声抱歉了,我尽快抽些时间整理下视频今天就发一篇关于go语言的基础知识吧!我这我工作中用到的一些常用函数,汇总出来分享给大家,希望对...
- 无规律文本拆分,这些函数你得会(没有分隔符没规律数据拆分)
-
今天文章来源于表格学员训练营群内答疑,混合文本拆分。其实拆分不难,只要规则明确就好办。就怕规则不清晰,或者规则太多。那真是,Oh,mygod.如上图所示进行拆分,文字表达实在是有点难,所以小熊变身灵...
- Python之文本解析:字符串格式化的逆操作?
-
引言前面的文章中,提到了关于Python中字符串中的相关操作,更多地涉及到了字符串的格式化,有些地方也称为字符串插值操作,本质上,就是把多个字符串拼接在一起,以固定的格式呈现。关于字符串的操作,其实还...
- 忘记【分列】吧,TEXTSPLIT拆分文本好用100倍
-
函数TEXTSPLIT的作用是:按分隔符将字符串拆分为行或列。仅ExcelM365版本可用。基本应用将A2单元格内容按逗号拆分。=TEXTSPLIT(A2,",")第二参数设置为逗号...
- Excel365版本新函数TEXTSPLIT,专攻文本拆分
-
Excel中字符串的处理,拆分和合并是比较常见的需求。合并,当前最好用的函数非TEXTJOIN不可。拆分,Office365于2022年3月更新了一个专业函数:TEXTSPLIT语法参数:【...
- 站长在线Python精讲使用正则表达式的split()方法分割字符串详解
-
欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中使用正则表达式的split()方法分割字符串详解》。使用正则表达式分割字符串在Python中使用正则表达式的split(...
- Java中字符串分割的方法(java字符串切割方法)
-
技术背景在Java编程中,经常需要对字符串进行分割操作,例如将一个包含多个信息的字符串按照特定的分隔符拆分成多个子字符串。常见的应用场景包括解析CSV文件、处理网络请求参数等。实现步骤1.使用Str...
- 因为一个函数strtok踩坑,我被老工程师无情嘲笑了
-
在用C/C++实现字符串切割中,strtok函数经常用到,其主要作用是按照给定的字符集分隔字符串,并返回各子字符串。但是实际上,可不止有strtok(),还有strtok、strtok_s、strto...
- 一周热门
- 最近发表
- 标签列表
-
- ps像素和厘米换算 (32)
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)