百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

PYTHON数据分析必备知识(2)(python数据分析范例)

itomcoil 2025-07-23 15:15 4 浏览

1.二分钟快速给项目添加日志信息

"""
给项目添加日志信息
"""
# 导Python内置包
import logging
import time   # 方便用日期命名日志

# 创建一个日志器logger
logger = logging.getLogger(__name__)

# 给日志器设置日志打印级别
logger.setLevel(logging.INFO)
# 创建一个格式器,用于控制日志输出格式
fm = logging.Formatter(fmt="当前时间为%(asctime)s,文件是%(filename)s,行号是%(lineno)d,日志级别是%(levelname)s,"
                              "描述信息是%(message)s",datefmt='%Y/%m/%d %H:%M:%S')
# 创建一个文件处理器,写入日志
fh = logging.FileHandler(filename="./{}log.txt".format(time.strftime("%Y_%m_%d %H_%M_%S",time.localtime())),encoding='utf-8')
# 关联日志器——格式器——文件处理器
logger.addHandler(fh)
fh.setFormatter(fm)
# 设置文件处理器打印日志的级别
# fh.setLevel(logging.INFO)

# 如果想打印日志在终端,可以添加SteamHandler()端处理器
st = logging.StreamHandler()
# 设置格式
st_fm = logging.Formatter(fmt='%(asctime)s - %(threadName)s[line:%(lineno)d] - %(levelname)s: %(message)s')
# 把日志器——处理器——格式器关联
logger.addHandler(st)
st.setFormatter(st_fm)
# 设置等级
st.setLevel(logging.INFO)


logger.debug('测试debug')
logger.info('测试info')
logger.warning('测试warning')
logger.error('测试error')
logger.critical('测试critical')

示图:

需要补充的日志理论知识:

"""
一、日志
1、定义:跟踪软件运行时产生的事件的方法(跟踪器)
2、作用:调试程序、定位问题,数据分析
二、如何实现日志收集
1、实现方式:内置模块logging
2、logging模块的基本应用:四大组件
    (1)日志器logger 给所有的应用程序提供接口
    (2)处理器handler 决定在不同端输出
    (3)格式器formater决定日志内容(日志包含的事件、行号、信息描述、信息级别)
    (4)过滤器filter对信息进行筛选,保留感兴趣的信息
3、四大组件的关系
一个日志器可以有多个处理器,一个处理器可以有各自的格式器和过滤器
三、日志级别(从低到高)
DEBUG:调试信息
INFO:关键事件描述
WARNING:警告信息
ERROR:错误信息
CRITICAL:严重错误
FATAL:致命错误
四、日志输出端:
1.指定位置的日志文件
2.控制台
五、输出日志级别是按照日志输出结拜控制还是处理器输出级别控制?
————输出日志级别是优先按照日志器的输出级别输出,其次再按照处理器输出级别输出
六、日志记录的特点
1.定义了INFO级别,例如logger.setLevel(logging.INFO),则应用程序里面所有的DEBUG级别的信息不被打印,也就是大于或者等于的设定级别的日志才会输出
2.日志记录的级别有继承性,子类会继承父类的所有日志级别

"""

2.DATAFRAME类型数组如何判断为空呢

"""
DataFrame类型数组如何判断为空呢
—————定义了列,里面没有数据仍为空
——————表中没数据,为空
"""
import pandas as pd

table_a = pd.DataFrame()
table_b = pd.DataFrame(columns=['测试1','测试2'],dtype=object)
table_c = pd.DataFrame([[4,9]]*3)
table_d = pd.DataFrame({
    '姓名':['大','搭','达','答'],
    '时间':[199991101,19991102,19991103,19991104],
    '性别':['男','男','女','男'],
})
print('&'*30)
print(table_a)
print('&'*30)
print(table_b)
print('&'*30)
print(table_c)
print('&'*30)
print(table_d)
print('&'*30)

if table_a.empty:
    print('table_a是空的')
if table_b.empty:
    print('table_b是空的')
if table_c.empty:
    print('table_c是空的')
if table_d.empty:
    print('table_d是空的')

示图:

3.密码的加密与解密

"""
密码加解密

原理:
.encode():原文本转二进制
.decode():二进制转源文本
"""
import base64

pwd = input('请输入密码:')

# 原文本-->二进制-->base64.b64encode()进行加密,@#$%是为了加盐
# new_pwd = base64.b64encode(('!@#$%' + pwd).encode())  # 输入231,生成:b'IUAjJCUyMzE='
# 去掉开头的b
new_pwd = base64.b64encode(('!@#$%' + pwd).encode()).decode()   # # 输入231,生成:'IUAjJCUyMzE='
# wb,以二进制格式打开一个文件用于写入。如果该文件已存在则将其覆盖。如果该文件不存在,创建新文件
with open ('password.txt','wb') as f:
    f.write(new_pwd.encode())


# 解密
with open('password.txt','r') as f:
    pwd = f.read()

print('mi',pwd)  # mi IUAjJCUyMzE=
print(type(pwd))  # <class 'str'>
print('mi1',pwd.encode()) # mi1 b'IUAjJCUyMzE='
# 用base64.b64decode解
# pwd1 = base64.b64decode(pwd.encode())
# print(pwd1)  # 输入231,生成:b'!@#$%231'
# 去b操作
pwd1 = base64.b64decode(pwd.encode()).decode()
print(pwd1)  # 输入231,生成:!@#$%231
# 去掉加盐,切掉前五位
pwd2 = pwd1[5:]
print(pwd2)

示图

4.制作简单加密器

把加密过程生成一个exe文件,点击exe输入密码即可完成加密,在txt文件获取加密后的密码

1.需要用到的py文件,例如demo21_1.py文件

import base64

pwd = input('请输入密码:')
new_pwd = base64.b64encode(('!@#$%' + pwd).encode()).decode()
with open ('password.txt','wb') as f:
    f.write(new_pwd.encode())

2.如何打包

1.第一步安装Python代码转成exe的工具包pyinstaller

pip install pyinsatller
# 或者
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyinstaller

2.执行打包命令

pyinstaller -F xxx.py 
# 或者
pyinstaller -D xxx.py
# -F 表示打包成文件
# -D 表示打包成文件夹
# --noconsel 以无提示模式启动安装程序
# -i 加入图标,图标用的ico格式

目录结构图

效果图

需要注意的是:如果添加图标时,想要获取.ico图片,不建议直接改.jpg图片的后缀名,这样可能会报错。

找格式工厂或者其他软件来获取.ico图标。

5.A列相同的,按照B列排序,用最新的C列、D列数据替换之前的数据

"""
用类别排序后,按编号进行分组,每组种判断最后一条数据的位置是不是上海,如果是,用这组最后一条的数据替换这组其余的数据,如果不是,不做处理。

pad/ffill:用前一个非缺失值去填充该缺失值
backfill/bfill:用下一个非缺失值填充该缺失值
None:指定一个值去替换缺失值(缺省默认这种方式)
limit参数:限制填充个数
axis参数:修改填充方向

"""
import os
import numpy as np
import pandas as pd
file_path = r'demo22.xlsx'
table = pd.read_excel(file_path)
print(table.shape[0])
test1 = table.sort_values('类别',ascending=False)

print('按照类别排序效果如下')
# print(test1)
print('再按照编号排序,生成了一个对象')
test_group = test1.groupby('编号')
# print(test_group)

# 创建两个空表
empty_test1 = pd.DataFrame(columns=table.columns,dtype=object)
empty_test2 = pd.DataFrame(columns=table.columns,dtype=object)

for group_name,df_group in test1.groupby('编号'):
    # print(group_name)  每一行的序号
    # print('展现以类别排序之后,按编号分组结果')
    print(df_group)   # 每一行的数据
    # print('展示每组最后一条数据')
    # print(df_group.tail(1))
    # df = df_group.tail(1)
    # print(df['位置'])
    # print(df['位置'].any())
    # print(df['位置'].item())
    # print(df['位置'].all())

    # 如果每组的最后一条数据是北京,把这一组的所有位置全部变成上海
    if df_group.tail(1)['位置'].any() == '上海':
        # iloc[] 包头不包尾
        # df_group.iloc[1:,1:3] = np.nan # 保留每组的第一条数据,其他第1索引,第2索引位置处设为nan
        # df_group.fillna(method='ffill',inplace=True)
        df_group.iloc[:-1,1:3] = np.nan   # 保留每组的最后一条数据,其他第1索引,第2索引位置处设为nan
        # print(df_group)
        df_group.fillna(method='bfill',inplace=True)
        """
                         编号   位置 工作类型 性别         时间     类别
            0  13123  NaN  NaN  女 2022-11-06  2023款
            5  13123  NaN  NaN  女 2022-11-05  2023款
            3  13123  NaN  NaN  女 2022-11-03  2021款
            7  13123   上海   全职  男 2022-11-08  2021款
        """
        # print(df_group)
        # 符合条件的累加
        empty_test1 = pd.concat([empty_test1,df_group])
    else:
        # 不符合条件的也累加
        empty_test2 = pd.concat([empty_test2, df_group])
total_test = pd.concat([empty_test1,empty_test2],ignore_index=True)
print(total_test)

file_path = r'total_test.xlsx'
if (os.path.exists(file_path)):
    os.remove(file_path)
total_test.to_excel(file_path,index=False)

示例图如下:

6.PANDAS中MERGE,CONCAT,JOIN三种拼接方法实战对比

6.1 concat

新建concat_1.xlsx和concat_2.xlsx,内容如下

"""
concat() 方法适用于两个表长或者宽度不匹配,需要强行填充
"""
import pandas as pd

file_path1 = r'concat_1.xlsx'
file_path2 = r'concat_2.xlsx'
table_a = pd.read_excel(file_path1)
table_b = pd.read_excel(file_path2)

# 默认axis=0 列拼接,当axis=1时,行拼接
# result1 = pd.concat([table_a,table_b])
result1 = pd.concat([table_a,table_b],keys='产品',axis=0)
print('result1')
print(result1)
result2 = pd.concat([table_a,table_b],axis=1)
print('result2')
print(result2)

效果如下

6.2 join

新建join_1.xlsx和join_2.xlsx,内容如下

"""
两个表长度不匹配,需要强行填充
————join用法:基于index连接dataframe的列
——————how:有四种连接方式:left,right,outer,inner,默认为left
——————on:标签的列表,根据某个字段进行拼接,必须存在与两个DataFrame中,若未同时存在,则需要同时使用left_on和right_on
——————lsuffix:字符串,左侧数据中重叠列使用的后缀
——————rsuffix:字符串,右侧数据中重叠列使用的后缀
——————sort 布尔类型,对非连接轴进行排序


"""

import pandas as pd

file_path1 = r'join_1.xlsx'
file_path2 = r'join_2.xlsx'
table_a = pd.read_excel(file_path1)
table_b = pd.read_excel(file_path2)
result = table_a.join(table_b,how='outer',lsuffix='2')
print(result)
result1 = table_b.join(table_a,how='outer',lsuffix='2')
print(result1)

6.3 merge[重点]

新建merge_1.xlsx和merge_2.xlsx,内容如下

"""
两个表长度不匹配,需要强行填充
————merge用法:基于相同的列进行拼接
——————它实现的数据库的join操作

"""
import pandas as pd

file_path1 = r'merge_1.xlsx'
file_path2 = r'merge_2.xlsx'
table_a = pd.read_excel(file_path1)
table_b = pd.read_excel(file_path2)

# 默认参数how是inner内连接,并且会按照相同的字段key进行合并,即等价于on='key'
result = pd.merge(table_a,table_b)
# 相当于result = pd.merge(table_a,table_b,on='产品')
print(result)

高阶用法

新建merge_3.xlsx和merge_4.xlsx,内容如下

执行代码:

"""
当两个表没有相同字段时的合并
"""

import pandas as pd

file_path1 = r'merge_3.xlsx'
file_path2 = r'merge_4.xlsx'
table_a = pd.read_excel(file_path1)
table_b = pd.read_excel(file_path2)

# 默认参数how是inner内连接,并且会按照相同的字段key进行合并,即等价于on='key'
result = pd.merge(table_a,table_b,left_on='产品',right_on='名称',how='left')
# 相当于result = pd.merge(table_a,table_b,on='产品')
print('result')
print(result)
result1 = pd.merge(table_a,table_b,left_on='产品',right_on='名称',how='right')
print('result1')
print(result1)

效果如下

总结:

1.merge基于相同的columns进行合并,类似于SQL中的join

2.join基于index连接dataframe的列

3.concat用于给dataframe添加行或者列

4.append方法不建议使用,在操作海量数据时,可以在终端打印,但是写不到excel的问题,而且在未来版本中,append函数已经弃用。

相关推荐

Python自动化——pytest常用插件详解

前言Pytest是Python的一种单元测试框架,与unittest相比,使用起来更简洁、效率更高,也是目前大部分使用python编写测试用例的小伙伴们的第一选择了。除了框架本身提供的功能外,Pyte...

全网最全pytest大型攻略,单元测试学这就够了

pytest是一款以python为开发语言的第三方测试,主要特点如下:比自带的unittest更简洁高效,兼容unittest框架支持参数化可以更精确的控制要测试的测试用例丰富的插件,已有30...

Python Logging 最佳实践(python logging配置)

Pythonlogging的“最佳实践”可以概括为一句话:让日志既能在开发时帮你排错,也能在生产里帮你定位问题,同时不给运维埋坑。下面给出一份可直接落地的checklist,分场景逐条说明。1....

Python单元测试框架对比(python中unittest框架)

一、核心框架对比特性unittest(标准库)pytest(主流第三方)nose2(unittest扩展)doctest(文档测试)安装Python标准库pipinstallpytestp...

如何使用Python进行单元测试(pycharm单元测试)

前言在我的日常工作中,我是一名专业程序员。我使用c++、c#和Javascript。我是一个开发团队的一员,他们使用单元测试来验证我们的代码是否按照它应该的方式工作。在本文中,我将通过讨论以下主题来研...

Python单元测试(pycharm单元测试)

1.单元测试概述1.1什么是单元测试单元测试(UnitTesting)是指对软件中的最小可测试单元进行检查和验证的过程。在Python中,最小单元通常指函数、方法或类。1.2单元测试的特性独立...

pytest框架之fixture测试夹具详解

前言大家晚上好呀,今天呢来和大家唠唠pytest中的fixtures夹具的详解,废话就不多说了咱们直接进入主题哈。一、fixture的优势pytest框架的fixture测试夹具就相当于unitte...

Pytest精髓Fixture功能实例!测试效率暴涨!

前言大家好!我们今天来学习Python测试框架中的最具特色的功能之一:Fixture。可以说,掌握了Fixture,你就掌握了Pytest的精髓。它不仅能让你的测试代码更简洁、更优雅、更易于...

Python最常见的170道面试题全解析答案(二)

60.请写一个Python逻辑,计算一个文件中的大写字母数量答:withopen(‘A.txt’)asfs:count=0foriinfs.read():ifi.isupper...

为什么python高手都爱用闭包?这个实时函数技巧绝了

杂谈我想很多人都玩过python的闭包,其中最有趣的部分应该就是装饰器了。但我想很多人应该没运用上闭包的特性——外部局部变量的存储。什么意思呢?其实就是当闭包引用外部的局部变量将会被存储起来,而不会随...

春节停车难?用Python找空车位(用python编写停车场停车收费)

【导语】今天这篇文章的选题非常贴近生活。营长生活在北京,深知开车出门最怕的就是堵车和找不到停车位。记得冬至那个周末,几个小伙伴滑雪回来找了一家饺子馆吃饺子,结果七拐八拐,好不容易才找到一个停车位。看到...

PYTHON数据分析必备知识(2)(python数据分析范例)

1.二分钟快速给项目添加日志信息"""给项目添加日志信息"""#导Python内置包importloggingimporttime...

春节回家!车位难求啊!看我用Python自动寻找空车位!

作者通过相机结合深度学习算法,基于Python语言建立一个高精度的停车位的通知系统,每当有新停车位时就会发短信提醒我。听起来好像很复杂,真的方便实用吗?但实际上所使用的工具都是现成的,只要将这些工...

“==”和“is”有什么区别?一个问题就能暴露你的Python水平

可能在网上你经常能看到关于这个问题的答案和解析,但是依然有很多刚开始学习Python的人,不了解这个问题,也不知道为什么问这个问题时会暴露自己是“菜鸟”,这个问题就是:“==”和“is”之间有什么...

Python条件语句怎么用(python中条件语句的用法)

if条件判断语句python语句是按固定顺序执行的,先执行前面的语句,再执行后面的语句。如果你像要程序按照你自己定制的流程执行,就需要用到流程控制的语句,最主要用到的是条件语句和循环语句。条件语句...