百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Python 图像处理

itomcoil 2025-08-01 17:47 2 浏览

以前照相从来没有那么容易。现在你只需要一部手机。拍照是免费的,如果我们不考虑手机的费用的话。就在上一代人之前,业余艺术家和真正的艺术家如果拍照非常昂贵,并且每张照片的成本也不是免费的。

我们拍照是为了及时保存伟大的时刻,被保存的记忆随时准备在未来被"打开"。

就像腌制东西一样,我们要注意正确的防腐剂。当然,手机也为我们提供了一系列的图像处理软件,但是一旦我们需要处理大量的照片,我们就需要其他的工具。这时,编程和Python就派上用场了。Python及其模块如Numpy、Scipy、Matplotlib和其他特殊模块提供了各种各样的函数,能够处理大量图片。

为了向你提供必要的知识,本章的Python教程将处理基本的图像处理和操作。为此,我们使用模块NumPy、Matplotlib和SciPy。

我们从scipy包misc开始。

# 以下行仅在Python notebook中需要:
%matplotlib inline
from scipy import misc
ascent = misc.ascent()
import matplotlib.pyplot as plt
plt.gray()
plt.imshow(ascent)
plt.show()

除了图像之外,我们还可以看到带有刻度的轴。这可能是非常有趣的,如果你需要一些关于大小和像素位置的方向,但在大多数情况下,你想看到没有这些信息的图像。我们可以通过添加命令plt.axis("off")来去掉刻度和轴:

from scipy import misc
ascent = misc.ascent()
import matplotlib.pyplot as plt
plt.axis("off") # 删除轴和刻度
plt.gray()
plt.imshow(ascent)
plt.show()

我们可以看到这个图像的类型是一个整数数组:

ascent.dtype

输出:

dtype('int64')

我们也可以检查图像的大小:

ascent.shape

输出:

(512,512)

misc包里还有一张浣熊的图片:

import scipy.misc
face = scipy.misc.face()
print(face.shape)
print(face.max)
print(face.dtype)
plt.axis("off")
plt.gray()
plt.imshow(face)
plt.show()
(768, 1024, 3)
<built-in method max of numpy.ndarray object at 0x7f9e70102800>
uint8
import matplotlib.pyplot as plt

matplotlib只支持png图像

img = plt.imread('frankfurt.png')
print(img[:3])
[[[ 0.41176471  0.56862748  0.80000001]
  [ 0.40392157  0.56078434  0.79215688]
  [ 0.40392157  0.56862748  0.79607844]
  ..., 
  [ 0.48235294  0.62352943  0.81960785]
  [ 0.47843137  0.627451    0.81960785]
  [ 0.47843137  0.62352943  0.82745099]]
 [[ 0.40784314  0.56470591  0.79607844]
  [ 0.40392157  0.56078434  0.79215688]
  [ 0.40392157  0.56862748  0.79607844]
  ..., 
  [ 0.48235294  0.62352943  0.81960785]
  [ 0.47843137  0.627451    0.81960785]
  [ 0.48235294  0.627451    0.83137256]]
 [[ 0.40392157  0.56862748  0.79607844]
  [ 0.40392157  0.56862748  0.79607844]
  [ 0.40392157  0.56862748  0.79607844]
  ..., 
  [ 0.48235294  0.62352943  0.81960785]
  [ 0.48235294  0.62352943  0.81960785]
  [ 0.48627451  0.627451    0.83137256]]]
plt.axis("off")
imgplot = plt.imshow(img)
lum_img = img[:,:,1]
print(lum_img)
[[ 0.56862748  0.56078434  0.56862748 ...,  0.62352943  0.627451
   0.62352943]
 [ 0.56470591  0.56078434  0.56862748 ...,  0.62352943  0.627451    0.627451  ]
 [ 0.56862748  0.56862748  0.56862748 ...,  0.62352943  0.62352943
   0.627451  ]
 ..., 
 [ 0.31764707  0.32941177  0.32941177 ...,  0.30588236  0.3137255
   0.31764707]
 [ 0.31764707  0.3137255   0.32941177 ...,  0.3019608   0.32156864
   0.33725491]
 [ 0.31764707  0.3019608   0.33333334 ...,  0.30588236  0.32156864
   0.33333334]]
plt.axis("off")
imgplot = plt.imshow(lum_img)

色彩、色度和色调

现在,我们将展示如何给图像着色。色彩是色彩理论的一种表达,是画家常用的一种技法。想到画家而不想到荷兰是很难想象的。所以在下一个例子中,我们使用荷兰风车的图片。

windmills = plt.imread('windmills.png')
plt.axis("off")
plt.imshow(windmills)

输出:

<matplotlib.image.AxesImage at 0x7f9e77f02f98>

我们现在想给图像着色。我们用白色,这将增加图像的亮度。为此,我们编写了一个Python函数,它接受一个图像和一个百分比值作为参数。设置"百分比"为0不会改变图像,设置为1表示图像将完全变白:

import numpy as np
import matplotlib.pyplot as plt
def tint(imag, percent):
    """
    imag: 图像
    percent: 0,图像将保持不变,1,图像将完全变白色,值应该在0~1
    """
    tinted_imag = imag + (np.ones(imag.shape) - imag) * percent
    return tinted_imag
windmills = plt.imread('windmills.png')
tinted_windmills = tint(windmills, 0.8)
plt.axis("off")
plt.imshow(tinted_windmills)

输出:

<matplotlib.image.AxesImage at 0x7f9e6cd99978>

阴影是一种颜色与黑色的混合,它减少了亮度。

import numpy as np
import matplotlib.pyplot as plt
def shade(imag, percent):
    """
    imag: 图像
    percent: 0,图像将保持不变,1,图像将完全变黑,值应该在0~1
    """
    tinted_imag = imag * (1 - percent)
    return tinted_imag
windmills = plt.imread('windmills.png')
tinted_windmills = shade(windmills, 0.7)
plt.imshow(tinted_windmills)

输出:

<matplotlib.image.AxesImage at 0x7f9e6cd20048>
def vertical_gradient_line(image, reverse=False):
    """
    我们创建一个垂直梯度线。形状 (1, image.shape[1], 3))
    如果reverse为False,则值从0增加到1,
    否则,值将从1递减到0。
    """
    number_of_columns = image.shape[1]
    if reverse:
        C = np.linspace(1, 0, number_of_columns)
    else:
        C = np.linspace(0, 1, number_of_columns)
    C = np.dstack((C, C, C))
    return C
horizontal_brush = vertical_gradient_line(windmills)
tinted_windmills =  windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)

输出:

<matplotlib.image.AxesImage at 0x7f9e6ccb3d68>

现在,我们将通过将Python函数的reverse参数设置为“True”来从右向左着色图像:

def vertical_gradient_line(image, reverse=False):
    """
    我们创建一个水平梯度线。形状 (1, image.shape[1], 3))
    如果reverse为False,则值从0增加到1,
    否则,值将从1递减到0。
    """
    number_of_columns = image.shape[1]
    if reverse:
        C = np.linspace(1, 0, number_of_columns)
    else:
        C = np.linspace(0, 1, number_of_columns)
    C = np.dstack((C, C, C))
    return C
horizontal_brush = vertical_gradient_line(windmills, reverse=True)
tinted_windmills =  windmills * horizontal_brush
plt.axis("off")
plt.imshow(tinted_windmills)

输出:

<matplotlib.image.AxesImage at 0x7f9e6cbc82b0>
def horizontal_gradient_line(image, reverse=False):
    """
    我们创建一个垂直梯度线。形状(image.shape[0], 1, 3))
    如果reverse为False,则值从0增加到1,
    否则,值将从1递减到0。
    """
    number_of_rows, number_of_columns = image.shape[:2]
    C = np.linspace(1, 0, number_of_rows)
    C = C[np.newaxis,:]
    C = np.concatenate((C, C, C)).transpose()
    C = C[:, np.newaxis]
    return C
vertical_brush = horizontal_gradient_line(windmills)
tinted_windmills =  windmills 
plt.imshow(tinted_windmills)

输出:

<matplotlib.image.AxesImage at 0x7f9e6cb52390>

色调是由一种颜色与灰色的混合产生的,或由着色和阴影产生的。

charlie = plt.imread('Chaplin.png')
plt.gray()
print(charlie)
plt.imshow(charlie)
[[ 0.16470589  0.16862746  0.17647059 ...,  0.          0.          0.        ]
 [ 0.16078432  0.16078432  0.16470589 ...,  0.          0.          0.        ]
 [ 0.15686275  0.15686275  0.16078432 ...,  0.          0.          0.        ]
 ..., 
 [ 0.          0.          0.         ...,  0.          0.          0.        ]
 [ 0.          0.          0.         ...,  0.          0.          0.        ]
 [ 0.          0.          0.         ...,  0.          0.          0.        ]]

输出:

<matplotlib.image.AxesImage at 0x7f9e70047668>

给灰度图像着色

:http://scikit-image.org/docs/dev/auto_examples/plot_tinting_grayscale_images.html

在下面的示例中,我们将使用不同的颜色映射。颜色映射可以在

matplotlib.pyplot.cm.datad中找到:

plt.cm.datad.keys()

输出:

dict_keys(['afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg', 'CMRmap', 'cool', 'copper', 'cubehelix', 'flag', 'gnuplot', 'gnuplot2', 'gray', 'hot', 'hsv', 'jet', 'ocean', 'pink', 'prism', 'rainbow', 'seismic', 'spring', 'summer', 'terrain', 'winter', 'nipy_spectral', 'spectral', 'Blues', 'BrBG', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PiYG', 'PRGn', 'PuBu', 'PuBuGn', 'PuOr', 'PuRd', 'Purples', 'RdBu', 'RdGy', 'RdPu', 'RdYlBu', 'RdYlGn', 'Reds', 'Spectral', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd', 'gist_earth', 'gist_gray', 'gist_heat', 'gist_ncar', 'gist_rainbow', 'gist_stern', 'gist_yarg', 'coolwarm', 'Wistia', 'Accent', 'Dark2', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c', 'Vega10', 'Vega20', 'Vega20b', 'Vega20c', 'afmhot_r', 'autumn_r', 'bone_r', 'binary_r', 'bwr_r', 'brg_r', 'CMRmap_r', 'cool_r', 'copper_r', 'cubehelix_r', 'flag_r', 'gnuplot_r', 'gnuplot2_r', 'gray_r', 'hot_r', 'hsv_r', 'jet_r', 'ocean_r', 'pink_r', 'prism_r', 'rainbow_r', 'seismic_r', 'spring_r', 'summer_r', 'terrain_r', 'winter_r', 'nipy_spectral_r', 'spectral_r', 'Blues_r', 'BrBG_r', 'BuGn_r', 'BuPu_r', 'GnBu_r', 'Greens_r', 'Greys_r', 'Oranges_r', 'OrRd_r', 'PiYG_r', 'PRGn_r', 'PuBu_r', 'PuBuGn_r', 'PuOr_r', 'PuRd_r', 'Purples_r', 'RdBu_r', 'RdGy_r', 'RdPu_r', 'RdYlBu_r', 'RdYlGn_r', 'Reds_r', 'Spectral_r', 'YlGn_r', 'YlGnBu_r', 'YlOrBr_r', 'YlOrRd_r', 'gist_earth_r', 'gist_gray_r', 'gist_heat_r', 'gist_ncar_r', 'gist_rainbow_r', 'gist_stern_r', 'gist_yarg_r', 'coolwarm_r', 'Wistia_r', 'Accent_r', 'Dark2_r', 'Paired_r', 'Pastel1_r', 'Pastel2_r', 'Set1_r', 'Set2_r', 'Set3_r', 'tab10_r', 'tab20_r', 'tab20b_r', 'tab20c_r', 'Vega10_r', 'Vega20_r', 'Vega20b_r', 'Vega20c_r'])
import numpy as np
import matplotlib.pyplot as plt
charlie = plt.imread('Chaplin.png')
#  colormaps plt.cm.datad
# cmaps = set(plt.cm.datad.keys())
cmaps = {'afmhot', 'autumn', 'bone', 'binary', 'bwr', 'brg', 
         'CMRmap', 'cool', 'copper', 'cubehelix', 'Greens'}
X = [  (4,3,1, (1, 0, 0)), (4,3,2, (0.5, 0.5, 0)), (4,3,3, (0, 1, 0)), 
       (4,3,4, (0, 0.5, 0.5)),  (4,3,(5,8), (0, 0, 1)), (4,3,6, (1, 1, 0)), 
       (4,3,7, (0.5, 1, 0) ),               (4,3,9, (0, 0.5, 0.5)),
       (4,3,10, (0, 0.5, 1)), (4,3,11, (0, 1, 1)),    (4,3,12, (0.5, 1, 1))]
fig = plt.figure(figsize=(6, 5))
#fig.subplots_adjust(bottom=0, left=0, top = 0.975, right=1)
for nrows, ncols, plot_number, factor in X:
    sub = fig.add_subplot(nrows, ncols, plot_number)
    sub.set_xticks([])
    plt.colors()

    sub.imshow(charlie*0.0002, cmap=cmaps.pop())
    sub.set_yticks([])
#fig.show()

相关推荐

pip 设置镜像源

pip是python必不可少的的包管理工具,但是要在国内用得爽,必须要配置镜像源。我常用的是清华镜像站。pipconfigsetglobal.index-urlhttps://pypi...

定制构建OpenWrt发行版镜像及插件安装包,升级插件到最新版本

最近Tailscale提示OpenWrt路由器上的版本太低,建议升级到最新版本。OpenWrt用的23.05的,因为23.05中带的tailscale版本比较老,之前升级都是从主线版本中下载最新的ta...

第十节 Dockerfile 核心指南:从基础概念到镜像构建实践

一、Dockerfile基础概念(一)本质与作用Dockerfile是用于定义Docker镜像构建流程的文本文件,包含一系列指令和说明,指导Docker引擎生成定制化镜像。其核心价值在于:...

Python 模型部署不用愁!容器化实战,5 分钟搞定环境配置

你是不是也遇到过这种糟心事:花了好几天训练出的Python模型,在自己电脑上跑得顺顺当当,一放到服务器就各种报错。要么是Python版本不对,要么是依赖库冲突,折腾半天还是用不了。别再喊“我...

Docker-镜像

1、获取镜像在Docker中,获取(下载)镜像通常使用dockerpull命令:基本用法:dockerpull镜像名称[:标签]例如:dockerpullnginx...

第十二节 Ubuntu 系统 Docker 镜像安装与容器运行指南

一、Ubuntu镜像版本选择(一)DockerHub镜像库浏览Ubuntu官方镜像在DockerHub上提供多版本支持,访问地址:https://hub.docker.com/_/ubu...

Docker-使用Dockerfile 定制镜像

一、什么是Dockerfile?Dockerfile是一个文本文件,其中包含一条条构建镜像所需的指令。Docker引擎会按顺序执行这些指令,逐步构建出最终的自定义镜像。二、Dockerfil...

在Windows的WSL环境中本地安装watercrawl和Python3.13

这段时间在折腾Dify环境调用网络爬虫工具去自动化抓取网页信息的功能,就希望在本地Windows11的WSL环境中docker方式部署watercrawl,但每次都报错如下:用命令pip--ver...

1分钟搞定!Python超速工具uv换国内镜像,下载速度飙升10倍

1分钟搞定!Python超速工具uv换国内镜像,下载速度飙升10倍作为搞运维的老手,我太清楚Python包下载速度慢是啥滋味了。今天我来教你用3行代码给uv换上清华或者阿里云的镜像,这样就...

Dockerfile 教程:构建你的第一个自定义镜像!

Dockerfile就是你自定义镜像的“说明书”,学会它,你就能打造属于自己的开发环境、部署环境,甚至可以把你的应用一键打包。一、什么是Dockerfile?Dockerfile是一个文本文件...

提升Python编程效率的10点建议

程序员的时间很宝贵,Python这门语言虽然足够简单、优雅,但并不是说你使用Python编程,效率就一定会高。要想节省时间、提高效率,还是需要注意很多地方的。今天就与大家分享资深Python程序员总结...

掌握线性代数: 奇异值分解 (SVD)

奇异值分解(SVD)什么是SVD?奇异值分解是一种矩阵分解方法,它将矩阵A分解为三个分量:哪里:U是正交矩阵(mxm)Σ是包含奇异值(mxn)的对角矩阵V^T是另一个正交矩...

用 Docker+K8s 部署模型,再也不怕流量暴增和服务器崩溃了

上周朋友公司的AI模型又出问题了——电商大促期间,预测接口突然崩溃,眼睁睁看着订单流失。老板气得拍桌子:“花了几十万训练的模型,连个大促都扛不住?”这其实是很多企业的通病:模型在实验室跑得好好...

Python 图像处理

以前照相从来没有那么容易。现在你只需要一部手机。拍照是免费的,如果我们不考虑手机的费用的话。就在上一代人之前,业余艺术家和真正的艺术家如果拍照非常昂贵,并且每张照片的成本也不是免费的。我们拍照是为了及...

一文让你掌握22个神经网络训练技巧

作者丨匡吉来源丨深蓝学院神经网络训练是一个非常复杂的过程,在这过程中,许多变量之间相互影响,因此我们研究者在这过程中,很难搞清楚这些变量是如何影响神经网络的。而本文给出的众多tips就是让大家,在神经...