百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

机器学习笔记-LSTM(长短时记忆网络)

itomcoil 2024-12-22 18:53 28 浏览

一 简介

LSTM网络,即长短期记忆网络,是循环神经网络(RNN)的一种高级形式,擅长捕捉数据中的长期依赖关系。

二 实现

(1)数据集:

百度网盘链接:https://pan.baidu.com/s/1oHPLWcs3XnFqJnJfKcLStQ

提取码:clyz

(2)环境:pytorch、sklearn、pandas、matplotlib、numpy

(3)导入包:

import pandas as pd
from matplotlib import pyplot as plt # 结果可视化
from torch import nn
import time
import matplotlib.pyplot as plt
import numpy as np
from typing import Tuple
from sklearn.preprocessing import MinMaxScaler
import torch

(4)设置显示中文:

plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False

(5)定义网络:

class LSTM_Regression(nn.Module):
    """
        使用LSTM进行回归
        参数:
        - input_size: 输入维度
        - hidden_size: 隐藏层维度
        - output_size: 输出维度
        - num_layers: cell的层数
        - dropout: 遗忘率
        - learning_rate: 学习率
        - batch_size: 批大小
    """
 
    def __init__(self, input_size, hidden_size, output_size=1, num_layers=2, dropout=0.2, learning_rate=0.001, batch_size=32):
        super().__init__()
 
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers)  # LSTM层
        self.fc = nn.Linear(hidden_size, output_size)  # 全连接层
 
    def forward(self, _x):
        x, _ = self.lstm(_x)  # 输入数据和隐藏层输出
        s, b, h = x.shape  # 输入数据的形状
        x = x.view(s * b, h)  # 展开输入数据
        x = self.fc(x)  # 全连接层
        x = x.view(s, b, -1)  # 还原输入数据的形状
        return x

(6)定义数据集:

def create_dataset(data, days_for_train=5) -> Tuple[np.array, np.array]:
    """
        根据给定的序列data,生成数据集
        数据集分为输入和输出,每一个输入的长度为days_for_train,每一个输出的长度为1。
        也就是说用days_for_train天的数据,对应下一天的数据。
        若给定序列的长度为d,将输出长度为(d-days_for_train+1)个输入/输出对
    """
    dataset_x, dataset_y = [], []
    for i in range(len(data) - days_for_train):
        _x = data[i:(i + days_for_train)]
        dataset_x.append(_x)
        dataset_y.append(data[i + days_for_train])
    return (np.array(dataset_x), np.array(dataset_y))

(7)读取并查看数据:

 # 读取数据
    data = pd.read_csv('D:/myfile/myWorkSpace/参与的项目/备品备件-07.05/0708预处理/0718_datas/02/电力负荷.csv')

    # 转换为时间格式
    data['出库日期'] = pd.to_datetime(data['出库日期'])
    # print(data.head())
    df = data.rename(columns={'出库日期': 'ds', '数量和': 'y'})
    plt.plot(df['y'])
    plt.show()

(8)MinMaxScaler数据归一化

    # 创建一个MinMaxScaler实例
    scaler = MinMaxScaler()
    # 使用fit_transform方法来拟合数据并进行转换
    df_normalized = scaler.fit_transform(df['y'].values.reshape(-1, 1))

    plt.plot(df_normalized)
    plt.show()

(9)获取并打印数据集:

dataset_x, dataset_y = create_dataset(df_normalized, DAYS_FOR_TRAIN)
print(dataset_x.shape, dataset_y.shape)

(10)数据集准备:

        train_size = int(len(dataset_x) * 0.8)
    
        train_x = dataset_x[:train_size]
        train_y = dataset_y[:train_size]

        # 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
        train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
        train_y = train_y.reshape(-1, 1, 1)

        # 转为pytorch的tensor对象
        train_x = torch.from_numpy(train_x).to(torch.float32) 
        train_y = torch.from_numpy(train_y).to(torch.float32) 

(11)使用模型:

model = LSTM_Regression(DAYS_FOR_TRAIN, 60, output_size=1, num_layers=2, dropout=0.2, learning_rate=0.001, batch_size=32) 

(12)开始训练:

        train_loss = []
        loss_function = nn.MSELoss()
        optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)

        for i in range(200):
            out = model(train_x)
            loss = loss_function(out, train_y)
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()
            train_loss.append(loss.item())

(13)绘制损失曲线:

        # loss曲线
        plt.figure()
        plt.plot(train_loss, 'b', label='loss')
        plt.title("Train_Loss_Curve")
        plt.ylabel('train_loss')
        plt.xlabel('epoch_num')
        plt.legend()
        plt.show()

(14)模型评估:

        model = model.eval()  # 转换成评估模式
        # 注意这里用的是全集 模型的输出长度会比原数据少DAYS_FOR_TRAIN 需要填充使长度相等
        dataset_x = dataset_x.reshape(-1, 1, DAYS_FOR_TRAIN)  
        dataset_x = torch.from_numpy(dataset_x).to(torch.float32)  # 转为pytorch的tensor对象
    
        pred_test = model(dataset_x)  # 全量训练集
        pred_test = pred_test.view(-1).data.numpy()
        pred_test = np.concatenate((np.zeros(DAYS_FOR_TRAIN), pred_test))  # 填充0 使长度相同

(15)逆变换预测结果:

# 逆变换预测结果
preds = scaler.inverse_transform(pred_test.reshape(-1, 1))
reals = scaler.inverse_transform(df_normalized.reshape(-1, 1))

(16)绘图(预测值-实际值):

(17)计算准确率:

       # 计算准确率
        errors = abs(preds - reals)

        errors_01 = [e < t * 0.01 for e, t in zip(errors, reals)]
        errors_03 = [e < t * 0.03 for e, t in zip(errors, reals)]
        errors_05 = [e < t * 0.05 for e, t in zip(errors, reals)]
        errors_10 = [e < t * 0.10 for e, t in zip(errors, reals)]
        errors_15 = [e < t * 0.15 for e, t in zip(errors, reals)]

        count_01 = np.mean(errors_01)
        count_03 = np.mean(errors_03)
        count_05 = np.mean(errors_05)
        count_10 = np.mean(errors_10)
        count_15 = np.mean(errors_15)

        print("误差 1%: ", count_01)
        print("误差 3%: ", count_03)
        print("误差 5%: ", count_05)
        print("误差 10%: ", count_10)
        print("误差 15%: ", count_15)

三 小结

模型没有进行任何处理,直接预测的结果较好,如果想进一步提高模型的精度,需要进行参数调整:

  • 隐藏状态维度(hidden size/dimension):定义LSTMLSTM记忆细胞的容量。较大的隐藏尺寸可以捕获更复杂的信息,但也会增加计算成本和过拟合的风险。
  • 层数(num_layers):LSTM层的数量。增加层数可以学习更深层次的特征表示,但也可能带来梯度消失/爆炸问题,并增加训练时间和计算资源需求。
  • 学习率(learning rate):这是优化器在梯度下降过程中更新权重的步长。选择合适的学习率很关键,过高可能导致训练不稳定,过低则收敛速度慢。常见的初始学习率范围为10e-2至10e?4,并可能在训练过程中动态调整。
  • 批量大小(batch size):每次迭代时处理的数据样本数量。较大的批量可以加速计算,但可能会导致泛化能力降低和内存需求增加。较小的批量提供了更好的泛化能力,但训练速度较慢。
  • 激活函数:虽然不是直接的超参数,但选择不同的激活函数(如tanh、ReLU或softsign)会影响模型的训练动态和性能。
  • 优化器(optimizer):如Adam、RMSprop、SGD等,不同的优化器有不同的更新规则,影响学习效率和最终性能。
  • dropout比例:在训练过程中随机“丢弃”一部分神经元以减少过拟合,常见的dropout比例为0.2至0.5。
  • 序列长度(sequence length):对于时间序列数据,决定输入序列的长度,可能影响模型理解和捕捉长期依赖的能力。

相关推荐

selenium(WEB自动化工具)

定义解释Selenium是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7,8,9,10,11),MozillaF...

开发利器丨如何使用ELK设计微服务中的日志收集方案?

【摘要】微服务各个组件的相关实践会涉及到工具,本文将会介绍微服务日常开发的一些利器,这些工具帮助我们构建更加健壮的微服务系统,并帮助排查解决微服务系统中的问题与性能瓶颈等。我们将重点介绍微服务架构中...

高并发系统设计:应对每秒数万QPS的架构策略

当面试官问及"如何应对每秒几万QPS(QueriesPerSecond)"时,大概率是想知道你对高并发系统设计的理解有多少。本文将深入探讨从基础设施到应用层面的解决方案。01、理解...

2025 年每个 JavaScript 开发者都应该了解的功能

大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.Iteratorhelpers开发者...

JavaScript Array 对象

Array对象Array对象用于在变量中存储多个值:varcars=["Saab","Volvo","BMW"];第一个数组元素的索引值为0,第二个索引值为1,以此类推。更多有...

Gemini 2.5编程全球霸榜,谷歌重回AI王座,神秘模型曝光,奥特曼迎战

刚刚,Gemini2.5Pro编程登顶,6美元性价比碾压Claude3.7Sonnet。不仅如此,谷歌还暗藏着更强的编程模型Dragontail,这次是要彻底翻盘了。谷歌,彻底打了一场漂亮的翻...

动力节点最新JavaScript教程(高级篇),深入学习JavaScript

JavaScript是一种运行在浏览器中的解释型编程语言,它的解释器被称为JavaScript引擎,是浏览器的一部分,JavaScript广泛用于浏览器客户端编程,通常JavaScript脚本是通过嵌...

一文看懂Kiro,其 Spec工作流秒杀Cursor,可移植至Claude Code

当Cursor的“即兴编程”开始拖累项目质量,AWS新晋IDEKiro以Spec工作流打出“先规范后编码”的系统工程思维:需求-设计-任务三件套一次生成,文档与代码同步落地,复杂项目不...

「晚安·好梦」努力只能及格,拼命才能优秀

欢迎光临,浏览之前点击上面的音乐放松一下心情吧!喜欢的话给小编一个关注呀!Effortscanonlypass,anddesperatelycanbeexcellent.努力只能及格...

JavaScript 中 some 与 every 方法的区别是什么?

大家好,很高兴又见面了,我是姜茶的编程笔记,我们一起学习前端相关领域技术,共同进步,也欢迎大家关注、点赞、收藏、转发,您的支持是我不断创作的动力在JavaScript中,Array.protot...

10个高效的Python爬虫框架,你用过几个?

小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapysc...

12个高效的Python爬虫框架,你用过几个?

实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实...

pip3 install pyspider报错问题解决

运行如下命令报错:>>>pip3installpyspider观察上面的报错问题,需要安装pycurl。是到这个网址:http://www.lfd.uci.edu/~gohlke...

PySpider框架的使用

PysiderPysider是一个国人用Python编写的、带有强大的WebUI的网络爬虫系统,它支持多种数据库、任务监控、项目管理、结果查看、URL去重等强大的功能。安装pip3inst...

「机器学习」神经网络的激活函数、并通过python实现激活函数

神经网络的激活函数、并通过python实现whatis激活函数感知机的网络结构如下:左图中,偏置b没有被画出来,如果要表示出b,可以像右图那样做。用数学式来表示感知机:上面这个数学式子可以被改写:...