百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

一文读懂 JavaScript依赖注入_javaee依赖注入

itomcoil 2025-08-21 03:13 3 浏览

大家好,我是 Echa。

依赖注入 DI (Dependency Injection) 是编程领域中一个非常常见的设计模式,它指的是将应用程序所需的依赖关系(如服务或其他组件)通过构造函数参数或属性自动注入的过程。这样做的好处是可以减少组件之间的耦合,更容易测试和维护。

我们先举个简单的例子,我们有两个简单的 A 类和 B 类,在 B 类中依赖了 A 类,我们在 B 类中对它进行实例化,并调用它的方法:

class A {
  constructor(name) {
    this.name = name;
  }
  log() {
    console.log("name: ", this.name);
  }
}

class B {
  a = new A("Echa");

  start() {
    this.a.log();
  }
}

const b = new B();
b.start();

但是这种写法是非常不灵活的, A 类作为一个依赖项,它的初始化的逻辑被硬编码到了 B 类中,如果我们想添加或修改其他的依赖项,必须要不断修改 B 类。

借助依赖注入的设计思想,我们可以将代码改写成下面这样:

class A {
  constructor(name) {
    this.name = name;
  }
  log() {
    console.log("name: ", this.name);
  }
}

class B {
  constructor(a) {
    this.a = a;
  }

  start() {
    this.a.log();
  }
}

const a = new A();
const b = new B(a);
b.start();

代码只做了很小的改动,最核心的变化就是我们将 A 类和 B 的实现完全分离开来了,他们无需再关心依赖的实例化,因为我们将依赖的注入提到的最外侧。

这也就是为什么我们常常将依赖注入和控制反转 IoC (Inversion of Control) 放在一起讲,控制反转即将创建对象的控制权进行转移,以前创建对象的主动权和创建时机是由自己把控的,而现在这种权力转移到第三方。

可能在这样简单的代码中我们还看不出来什么好处,但是在大型的代码库中,这种设计可以显着帮助我们减少样板代码,创建和连接依赖项的工作由一段程序统一处理,我们无需担心创建特定类所需的类的实例。

JavaScript 的各大框架中,依赖注入的设计模式也发挥着非常重要的作用,在 Angular、Vue.js、Next.js 等框架中都用到了依赖注入的设计模式。

JavaScript 框架中的依赖注入

Angular

Angular 中大量应用了依赖注入的设计思想。Angular 使用依赖注入来管理应用的各个部分之间的依赖关系,以及如何将这些依赖关系注入到应用中,例如你可以使用依赖注入来注入服务、组件、指令、管道等。

比如我们现在有个日志打点的工具类,我们可以使用 Injectable 将其指定为可注入对象。

// logger.service.ts
import { Injectable } from '@angular/core';

@Injectable({providedIn: 'root'})
export class Logger {
  writeCount(count: number) {
    console.warn(count);
  }
}

然后在组件中使用时,无需进行实例化,直接在 constructor 的参数中就可以取出自动注入好的对象:

// hello-world-di.component.ts
import { Component } from '@angular/core';
import { Logger } from '../logger.service';

@Component({
  selector: 'hello-world-di',
  templateUrl: './hello-world-di.component.html'
})
export class HelloWorldDependencyInjectionComponent  {
  count = 0;

  constructor(private logger: Logger) { }

  onLogMe() {
    this.logger.writeCount(this.count);
    this.count++;
  }
}

Vue.js

Vue.js 中,provideinject 其实也使用了依赖注入的设计模式。

  • provide 属性可以用来在父组件中提供一个值,这个值可以在父组件的所有子组件中注入。
export default {
  name: 'Parent',
  provide() {
    return {
      user: this.user
    };
  },
  data() {
    return {
      user: {
        name: 'John',
        age: 30
      }
    };
  }
};

  • inject 属性可以用来在子组件中注入父组件提供的值。
// 子组件
export default {
  name: 'Child',
  inject: ['user'],
  computed: {
    userName() {
      return this.user.name;
    }
  }
};

React.js

React.js 中,并没有直接使用依赖注入的地方,不过我们依然可以借助一些第三方库来实现, 比如我们可以通过 InversifyJS 提供的 injectable decorator 标记 class 是可被注入的。

import { injectable } from "inversify";

export interface IProvider<T> {
  provide(): T;
}

@injectable()
export class NameProvider implements IProvider<string> {
  provide() {
    return "World";
  }
}

在组件中,我们可以直接调用注入的 provide 方法,而组件内部不用关心它的实现。

import * as React from "react";
import { IProvider } from "./providers";

export class Hello extends React.Component {
  private readonly nameProvider: IProvider<string>;

  render() {
    return <h1>Hello {this.nameProvider.provide()}!</h1>;
  }
}

手动实现依赖注入

前面我们提到的 InversifyJS 实际上就是一个专门用来实现依赖注入的工具库,它主要就由 injectableinject 等几个装饰器组成的,这么神奇的功能究竟是咋实现的呢,下面我们手动来实现一下。

首先我们来明确一个需求场景,假设我们要使用 Koa 框架开发一个简单的 Node.js 服务。

Koa 中,Controller 用来处理用户请求和响应,它负责接收用户的请求,然后调用相应的服务或业务逻辑进行处理,最后将处理结果返回给用户。Service 用来封装业务逻辑和数据处理,它负责实现应用程序的核心功能。

Service 通常会被多个 Controller 所调用,它们之间是松散耦合的关系,我们希望用两装饰器来实现 Service 的自动依赖注入:

export default class UserController extends Controller {
  @Inject
  user: UserService;

  @UseService
  async list(ctx: ThriftContext): Promise<void> {
    const user = await this.user.findAll({ id: 1000 });
    console.log(1, user);
  }
}

在实现过程中我们可能会用到两个非常重要的 API,Metadata Reflection API 以及 Decorator API,我们先分别来回顾一下它们的基础知识。

Decorator API

装饰器模式是一种经典的设计模式,其目的是在不修改被装饰者(如某个函数、某个类等)源码的前提下,为被装饰者增加 / 移除某些功能。一些现代编程语言在语法层面提供了对装饰器模式的支持,并且各语言中的现代框架都大量应用了装饰器。主要用处分为两大类:

  • 收集用户定义的类/函数的信息(例如,用于生成路由表,用于实现依赖注入,等等)
  • 对用户定义的类/函数进行增强,增加额外功能

我们目前用的比较多的装饰器就是 TypeScript 的实验性装饰器,以及 ECMAScript中还处于 legacy 阶段的 Decorator API,下面是它的用法:

装饰类的时候,装饰器方法一般会接收一个目标类作为参数,下面是一个示例,给类增加静态属性、原型方法:

const addField = target => {
  target.age = 17;
  target.prototype.speak = function () {
    console.log('xxx');
  };
};

@addField
class People {
  
}

console.log(People.age);
const a = new People();
a.speak();

类属性装饰器可以用在类的属性、方法、get/set 函数中,一般会接收三个参数:

  • target:被修饰的类
  • name:类成员的名字
  • descriptor:属性描述符,对象会将这个参数传给 Object.defineProperty

下面是一个示例,可以修改类属性为只读:

function readonly(target, name, descriptor) {
  descriptor.writable = false;
  return descriptor;
}

class Person {
    @readonly name = 'person'
}

const person = new Person();
person.name = 'tom'; 

Metadata Reflection API

ReflectJavaScript 中的一个内置对象,它提供了一组用于操作对象的方法。它与其他内置对象类似,但是它的目的是为了提供一组用于操作对象的通用方法。

Reflect MetadataES7 的一个提案,它主要用来在声明的时候添加和读取元数据。

Reflect.getMetadata('design:type', target, key) 可以用来获取类 target 中属性 key 的类型信息:

function Inject() {
  return function (target: any, key: string, descriptor: PropertyDescriptor) {
    const type = Reflect.getMetadata('design:type', target, key);
    console.log(type); // [class Service]
    return descriptor;
  };
}

export default class WebsiteController extends Controller {
  @Inject()
  service: Service

  // ... 
}

Reflect.getMetadata('design:paramtypes', target, key) 可以用来获取类 target 中属性 key 的函数参数类型;

Reflect.getMetadata('design:returntype', target, key) 可以用来获取类 target 中属性 key 的函数返回值类型。

除能获取固定的类型信息之外,也可以自定义 MetaData,并在合适的时机获取它的值,示例如下:

function classDecorator(): ClassDecorator {
  return target => {
    // 在类上定义元数据,key 为 `classMetaData`,value 为 `a`
    Reflect.defineMetadata('classMetaData', 'a', target);
  };
}

@classDecorator()
class SomeClass {
  
}

Reflect.getMetadata('classMetaData', SomeClass); // 'a'

好了,有了这些知识,我们就可以手动来实现一个依赖注入装饰器了。

实现依赖注入

再明确一下我们的需求:在不同服务的 Controller 中共用 Service,使用 Service 时可以自动获取已注入的 Service 实例,同时 Service 里可以获取到请求的 Context 信息。

首先我们来实现,Inject 装饰器:

  • Controller 中注册需要用到哪些 Service
  • 通过 design:type 获取 Service 的类型信息
  • 通过自定义 metadata 存储 Controller 中用到哪些 Service
function Inject(target: any, key: string) {
  console.log(`注册 Controller: ${target} Service: ${key}`);
  // 获取当前 Service 的类型
  const serviceClass = Reflect.getMetadata('design:type', target, key);
  // 获取当前 Controller 已经注册过的 Service List
  const serviceList = Reflect.getMetadata(META_KEY_CONTROLLER_SERVICE, target) || [];
  // 将当前 Service 进行追加
  Reflect.defineMetadata(
    META_KEY_CONTROLLER_SERVICE,
    [...serviceList, { serviceClass, serviceName: key }],
    target
  );
}

然后是 UseService 装饰器:

  • 在请求过来时取出 metadata 中存储的 ControllerService 对应信息
  • Service 实例化,并将 Context 传入 Service
function UseService(target: any, name: string, descriptor: PropertyDescriptor) {
  const value = descriptor.value;
  descriptor.value = async function (...args: any) {
    // 获取当前请求的 Context
    const [ctx] = args;
    // 取出当前 Controller 已绑定的 Service
    const serviceList = Reflect.getMetadata(META_KEY_CONTROLLER_SERVICE, target) || [];
    console.log(serviceList);

    for (let i = 0; i < serviceList.length; i++) {
      const { serviceClass, serviceName } = serviceList[i];
      // 实例化 Service 并绑定 Context
      const service = new serviceClass(ctx);
      Reflect.set(service, 'ctx', ctx);
      // 给当前 Controller 挂载 Service 实例
      Reflect.set(target, serviceName, service);
    }
    return await Promise.resolve(value.apply(this, args));
  };
  return descriptor;
}

好了,接下来就可以愉快的使用了~

export default class UserController extends Controller {
  @Inject
  user: UserService;

  @UseService
  async list(ctx: ThriftContext): Promise<void> {
    const user = await this.user.findAll();
    console.log(1, user);
  }
}

最后

如果这篇文章帮助到了你,欢迎点赞和关注。


相关推荐

最强聚类模型,层次聚类 !!_层次聚类的优缺点

哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...

python决策树用于分类和回归问题实际应用案例

决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...

Python教程(四十五):推荐系统-个性化推荐算法

今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...

简单学Python——NumPy库7——排序和去重

NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...

PyTorch实战:TorchVision目标检测模型微调完

PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...

C4.5算法解释_简述c4.5算法的基本思想

C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...

Python中的数据聚类及可视化分析实践

探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...

用Python来统计大乐透号码的概率分布

用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...

python:支持向量机监督学习算法用于二分类和多分类问题示例

监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...

25个例子学会Pandas Groupby 操作

groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...

数据挖掘流程_数据挖掘流程主要有哪些步骤

数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...

使用Python寻找图像最常见的颜色_python 以图找图

如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...

财务预算分析全网最佳实践:从每月分析到每天分析

原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...

常用数据工具去重方法_数据去重公式

在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...

Python教程(四十):PyTorch深度学习-动态计算图

今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...