百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

25个例子学会Pandas Groupby 操作

itomcoil 2025-08-21 03:16 1 浏览

groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。

如果我们有一个包含汽车品牌和价格信息的数据集,那么可以使用groupby功能来计算每个品牌的平均价格。

在本文中,我们将使用25个示例来详细介绍groupby函数的用法。这25个示例中还包含了一些不太常用但在各种任务中都能派上用场的操作。

这里使用的数据集是随机生成的,我们把它当作一个销售的数据集。

import pandas as pd
sales = pd.read_csv("sales_data.csv")
sales.head()

1、单列聚合

我们可以计算出每个店铺的平均库存数量如下:

sales.groupby("store")["stock_qty"].mean()
#输出
store
Daisy 1811.861702
Rose 1677.680000
Violet 14622.406061
Name: stock_qty, dtype: float64

2、多列聚合

在一个操作中进行多个聚合。以下是我们如何计算每个商店的平均库存数量和价格。

sales.groupby("store")[["stock_qty","price"]].mean()

3、多列多个聚合

我们还可以使用agg函数来计算多个聚合值。

sales.groupby("store")["stock_qty"].agg(["mean", "max"])

4、对聚合结果进行命名

在前面的两个示例中,聚合列表示什么还不清楚。例如,“mean”并没有告诉我们它是什么的均值。在这种情况下,我们可以对聚合的结果进行命名。

sales.groupby("store").agg( 
avg_stock_qty = ("stock_qty", "mean"),
max_stock_qty = ("stock_qty", "max")
)

要聚合的列和函数名需要写在元组中。

5、多个聚合和多个函数

sales.groupby("store")[["stock_qty","price"]].agg(["mean", "max"])

6、对不同列的聚合进行命名

sales.groupby("store").agg(
avg_stock_qty = ("stock_qty", "mean"),
avg_price = ("price", "mean")
)

7、as_index参数

如果groupby操作的输出是DataFrame,可以使用as_index参数使它们成为DataFrame中的一列。

sales.groupby("store", as_index=False).agg(

avg_stock_qty = ("stock_qty", "mean"),
avg_price = ("price", "mean")
)

8、用于分组的多列

就像我们可以聚合多个列一样,我们也可以使用多个列进行分组。

sales.groupby(["store","product_group"], as_index=False).agg(

avg_sales = ("last_week_sales", "mean")

).head()

每个商店和产品的组合都会生成一个组。

9、排序输出

可以使用sort_values函数根据聚合列对输出进行排序。

sales.groupby(["store","product_group"], as_index=False).agg( avg_sales = ("last_week_sales", "mean")

).sort_values(by="avg_sales", ascending=False).head()

这些行根据平均销售值按降序排序。

10、最大的Top N

max函数返回每个组的最大值。如果我们需要n个最大的值,可以用下面的方法:

sales.groupby("store")["last_week_sales"].nlargest(2)
store 
Daisy 413 1883
231 947
Rose 948 883
263 623
Violet 991 3222
339 2690
Name: last_week_sales, dtype: int64

11、最小的Top N

与最大值相似,也可以求最小值

sales.groupby("store")["last_week_sales"].nsmallest(2)

12、第n个值

除上面2个以外,还可以找到一组中的第n个值。

sales_sorted = sales.sort_values(by=["store","last_month_sales"], ascending=False, ignore_index=True)

找到每个店铺上个月销售排名第五的产品如下:

sales_sorted.groupby("store").nth(4)

输出包含每个组的第5行。由于行是根据上个月的销售值排序的,所以我们将获得上个月销售额排名第五的行。

13、第n个值,倒排序

也可以用负的第n项。例如," nth(-2) "返回从末尾开始的第二行。

sales_sorted.groupby("store").nth(-2)

14、唯一值

unique函数可用于查找每组中唯一的值。例如,可以找到每个组中唯一的产品代码如下:

sales.groupby("store", as_index=False).agg(
unique_values = ("product_code","unique")
)

15、唯一值的数量

还可以使用nunique函数找到每组中唯一值的数量。

sales.groupby("store", as_index=False).agg(
number_of_unique_values = ("product_code","nunique")
)

16、Lambda表达式

可以在agg函数中使用lambda表达式作为自定义聚合操作。

sales.groupby("store").agg(
total_sales_in_thousands = (
"last_month_sales", 
lambda x: round(x.sum() / 1000, 1)
)
)

17、apply函数

使用apply函数将Lambda表达式应用到每个组。例如,我们可以计算每家店上周销售额与上个月四分之一销售额的差值的平均值,如下:

sales.groupby("store").apply(
lambda x: (x.last_week_sales - x.last_month_sales / 4).mean()
)
store
Daisy 5.094149
Rose 5.326250
Violet 8.965152
dtype: float64

18、dropna

缺省情况下,groupby函数忽略缺失值。如果用于分组的列中缺少一个值,那么它将不包含在任何组中,也不会单独显示。所以可以使用dropna参数来改变这个行为。

让我们首先添加一个缺少存储值的新行。

sales.loc[1000] = [None, "PG2", 10000, 120, 64, 96, 15, 53]

然后计算带有dropna参数和不带有dropna参数的每个商店的平均价格,以查看差异。

sales.groupby("store")["price"].mean()
store
Daisy 69.327426
Rose 60.513700
Violet 67.808727
Name: price, dtype: float64

看看设置了缺失值参数的结果:

sales.groupby("store", dropna=False)["price"].mean()
store
Daisy 69.327426
Rose 60.513700
Violet 67.808727
NaN 96.000000
Name: price, dtype: float64

groupby函数的dropna参数,使用pandas版本1.1.0或更高版本。

19、求组的个数

有时需要知道生成了多少组,这可以使用ngroups。

sales.groupby(["store", "product_group"]).ngroups
18

在商店和产品组列中有18种不同值的不同组合。

20、获得一个特定分组

get_group函数可获取特定组并且返回DataFrame。

例如,我们可以获得属于存储“Daisy”和产品组“PG1”的行如下:

aisy_pg1 = sales.groupby(
["store", "product_group"]).get_group(("Daisy","PG1")
)
daisy_pg1.head()

21、rank函数

rank函数用于根据给定列中的值为行分配秩。我们可以使用rank和groupby函数分别对每个组中的行进行排序。

sales["rank"] = sales.groupby("store"["price"].rank(
ascending=False, method="dense"
)

sales.head()

22、累计操作

们可以计算出每组的累计总和。

import numpy as npdf = pd.DataFrame(
{
"date": pd.date_range(start="2022-08-01", periods=8, freq="D"),
"category": list("AAAABBBB"),
"value": np.random.randint(10, 30, size=8)
}
)

我们可以单独创建一个列,包含值列的累计总和,如下所示:

df["cum_sum"] = df.groupby("category")["value"].cumsum()

23、expanding函数

expanding函数提供展开转换。但是对于展开以后的操作还是需要一个累计函数来堆区操作。例如它与cumsum 函数一起使用,结果将与与sum函数相同。

df["cum_sum_2"] = df.groupby(
"category"
)["value"].expanding().sum().values

24、累积平均

利用展开函数和均值函数计算累积平均。

df["cum_mean"] = df.groupby(
"category"
)["value"].expanding().mean().values

25、展开后的最大值

可以使用expand和max函数记录组当前最大值。

df["current_highest"] = df.groupby(
"category"
)["value"].expanding().max().values

在Pandas中groupby函数与aggregate函数共同构成了高效的数据分析工具。在本文中所做的示例涵盖了groupby功能的大多数用例,希望对你有所帮助。

作者:Soner Yildirim

相关推荐

最强聚类模型,层次聚类 !!_层次聚类的优缺点

哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...

python决策树用于分类和回归问题实际应用案例

决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...

Python教程(四十五):推荐系统-个性化推荐算法

今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...

简单学Python——NumPy库7——排序和去重

NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...

PyTorch实战:TorchVision目标检测模型微调完

PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...

C4.5算法解释_简述c4.5算法的基本思想

C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...

Python中的数据聚类及可视化分析实践

探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...

用Python来统计大乐透号码的概率分布

用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...

python:支持向量机监督学习算法用于二分类和多分类问题示例

监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...

25个例子学会Pandas Groupby 操作

groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...

数据挖掘流程_数据挖掘流程主要有哪些步骤

数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...

使用Python寻找图像最常见的颜色_python 以图找图

如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...

财务预算分析全网最佳实践:从每月分析到每天分析

原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...

常用数据工具去重方法_数据去重公式

在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...

Python教程(四十):PyTorch深度学习-动态计算图

今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...