百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

LLM面面观之MoE 小说面面观作者简介

itomcoil 2024-12-22 18:53 41 浏览

1. 背景

根据本qiang~最新的趋势观察,基于MoE架构的开源大模型越来越多,比如马斯克的Grok-1(314B), Qwen1.5-MoE-A2.7B等,因此想探究一下MoE里面的部分细节。

此文是本qiang~针对大语言模型的MoE的整理,包括原理、流程及部分源码

2. MoE原理

MoE的流行源于”欧洲的OpenAI” Mistral AI发布的论文及模型《Mixtral of Experts》,评测集上的效果吊打众多开源模型,如Llama 2 70B和GPT3.5。

《Mixtral of Experts》基础模型使用的是Mistral AI自研的Mistral 7B,该模型的特点包括:滑窗注意力(Sliding Window Aattention), 滚动缓冲区缓存(Rolling Buffer Cache)以及预填充-分块(Pre-fill and Chunking),具体细节可以查阅文末的论文地址。

本文以《Mixtral of Experts》为引子,探究MoE的相关细节,MoE的原理如下图所示:

(1) Transformers架构中的每一层中的FFN网络均替换为了8个FFN(专家),且由一个网关路由(gate router)进行控制

(2) 针对每一个token,每一层的网关路由仅选择其中的2个FFN(专家)来处理当前状态并进行加权输出

(3) 结果就是,每一个token访问了47B参数,但是在推理阶段仅仅使用了13B的激活参数(即,只使用2个专家,冻结其他6个专家)。

(4) 与Dropout机制对比,Dropout让部分神经元失活,而MoE是让部分专家失活

3. 源码

本qiang~研读并尝试执行了Mistral官网的github推理代码,该代码框架非常适合新手,无他,只因其几乎只是在torch上层做的封装,很少引擎其他第三方库,不像transformers,功能强大,但不适合新手研读代码…

为了普适性,下面的代码截取了transformers框架中的代码。

首先看下通用Transformers中FFN中的代码模块,代码位置在transformers.models.mistral.modeling_mistral, 主要流程是:

(1) 先经过gate_proj和up_proj的2个[hidden_size, intermediate_size]的线性转换

(2) 使用激活函数对gate_proj进行激活

(3) 二者的内积再经过down_proj线性转换。

class MistralMLP(nn.Module):

def __init__(self, config):

super().__init__()

self.config = config

self.hidden_size = config.hidden_size

self.intermediate_size = config.intermediate_size

self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)

self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)

self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)

self.act_fn = ACT2FN[config.hidden_act]


def forward(self, x):

return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


再来看下MoE中的专家模块,代码位置在transformers.models.mixtral.modeling_mixtral,主要流程是:

(1) 首先经过网关路由self.gate

(2) 然后选择其中2个专家,并归一化

(3) 之后遍历每个专家网络,并按照expert_mask进行筛选

(4) 如果expert_mask有值,则选择指定部分的隐藏层进行FFN操作,且输出结果进行加权

(5) 最后原地增加先前初始化的最终结果变量final_hidden_states

class MixtralSparseMoeBlock(nn.Module):


def __init__(self, config):

super().__init__()

self.hidden_dim = config.hidden_size

self.ffn_dim = config.intermediate_size

self.num_experts = config.num_local_experts

self.top_k = config.num_experts_per_tok


# gating

self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)


self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)])


def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:

""" """

batch_size, sequence_length, hidden_dim = hidden_states.shape

hidden_states = hidden_states.view(-1, hidden_dim)

# router_logits: (batch * sequence_length, n_experts)

router_logits = self.gate(hidden_states)


routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)

routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)

routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

# we cast back to the input dtype

routing_weights = routing_weights.to(hidden_states.dtype)


final_hidden_states = torch.zeros(

(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device

)


# One hot encode the selected experts to create an expert mask

# this will be used to easily index which expert is going to be sollicitated

expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)


# Loop over all available experts in the model and perform the computation on each expert

for expert_idx in range(self.num_experts):

expert_layer = self.experts[expert_idx]

idx, top_x = torch.where(expert_mask[expert_idx])


if top_x.shape[0] == 0:

continue


# in torch it is faster to index using lists than torch tensors

top_x_list = top_x.tolist()

idx_list = idx.tolist()


# Index the correct hidden states and compute the expert hidden state for

# the current expert. We need to make sure to multiply the output hidden

# states by `routing_weights` on the corresponding tokens (top-1 and top-2)

current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)

current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]


# However `index_add_` only support torch tensors for indexing so we'll use

# the `top_x` tensor here.

final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))

final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)

return final_hidden_states, router_logits

其中MixtralBlockSparseTop2MLP代码如下,可以看到和传统MistralMLP内容完全一致。

class MixtralBlockSparseTop2MLP(nn.Module):

def __init__(self, config: MixtralConfig):

super().__init__()

self.ffn_dim = config.intermediate_size

self.hidden_dim = config.hidden_size


self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)

self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)

self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)


self.act_fn = ACT2FN[config.hidden_act]


def forward(self, hidden_states):

current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)

current_hidden_states = self.w2(current_hidden_states)

return current_hidden_states


4. MoE微调

由于MoE只是将每一层的FFN改变为了每一层的gate网关路由+8个FFN专家,且gate网关路由和8个专家内部均为线性运算,所以可以无缝地结合LoRA、QLoRA进行指令微调

可以参考开源项目:https://github.com/yangjianxin1/Firefly

5. 答疑解惑

(1) 问:MoE 8*7B的模型是56B参数?

答:MoE 8*7B的参数量是47B,而不是56B,原因是每一层除了8个专家网络外,其他层均是复用的。

(2) 问:MoE的基础模型是Mistral 7B?

答:不是,MoE的模型架构与Mistral 7B相同,但其中的FFN替换为了8个FFN,且MoE是基于多语言数据集预训练而来的。

(3) MoE的稀疏性(sparse)体现在哪里?

答:在训练和推理时,同时只有两个专家网络会被激活,进行前向计算,其它专家网络处于失活状态。

6. 总结

一句话足矣~

本文主要针对大语言模型的MoE,包括原理及部分源码。

此外,建议大家可以针对源码进行运行,关于源码,欢迎大家一块交流。

7. 参考

(1) Mistral 7B:https://arxiv.org/pdf/2310.06825v1.pdf

(2) MoE: https://arxiv.org/pdf/2401.04088v1.pdf

(3) MoE开源指令微调框架Firefly: https://github.com/yangjianxin1/Firefly

相关推荐

《Queendom》宣布冠军!女团MAMAMOO四人激动落泪

网易娱乐11月1日报道据台湾媒体报道,南韩女团竞争回归的生死斗《Queendom》昨(10/31)晚播出大决赛,并以直播方式进行,6组女团、女歌手皆演唱新歌,并加总前三轮的赛前赛、音源成绩与直播现场投...

正确复制、重写别人的代码,不算抄袭

我最近在一篇文章提到,工程师应该怎样避免使用大量的库、包以及其他依赖关系。我建议的另一种方案是,如果你没有达到重用第三方代码的阈值时,那么你就可以自己编写代码。在本文中,我将讨论一个在重用和从头开始编...

HTML DOM tr 对象_html event对象

tr对象tr对象代表了HTML表格的行。HTML文档中出现一个<tr>标签,就会创建一个tr对象。tr对象集合W3C:W3C标签。集合描述W3Ccells返回...

JS 打造动态表格_js如何动态改变表格内容

后台列表页最常见的需求:点击表头排序+一键全选。本文用原生js代码实现零依赖方案,涵盖DOM查询、排序算法、事件代理三大核心技能。效果速览一、核心思路事件入口:为每个<th>绑...

连肝7个晚上,总结了66条计算机网络的知识点

作者|哪吒来源|程序员小灰(ID:chengxuyuanxiaohui)计算机网络知识是面试常考的内容,在实际工作中经常涉及。最近,我总结了66条计算机网络相关的知识点。1、比较http0....

Vue 中 强制组件重新渲染的正确方法

作者:MichaelThiessen译者:前端小智来源:hackernoon有时候,依赖Vue响应方式来更新数据是不够的,相反,我们需要手动重新渲染组件来更新数据。或者,我们可能只想抛开当前的...

为什么100个前端只有1人能说清?浏览器重排/重绘深度解析

面试现场的"致命拷问""你的项目里做过哪些性能优化?能具体讲讲重排和重绘的区别吗?"作为面试官,我在秋招季连续面试过100多位前端候选人,这句提问几乎成了必考题。但令...

HTML DOM 介绍_dom4j html

HTMLDOM(文档对象模型)是一种基于文档的编程接口,它是HTML和XML文档的编程接口。它可以让开发人员通过JavaScript或其他脚本语言来访问和操作HTML和XML文档...

JavaScript 事件——“事件流和事件处理程序”的注意要点

事件流事件流描述的是从页面中接收事件的顺序。IE的事件流是事件冒泡流,而NetscapeCommunicator的事件流是事件捕获流。事件冒泡即事件开始时由最具体的元素接收,然后逐级向上传播到较为不...

探秘 Web 水印技术_水印制作网页

作者:fransli,腾讯PCG前端开发工程师Web水印技术在信息安全和版权保护等领域有着广泛的应用,对防止信息泄露或知识产品被侵犯有重要意义。水印根据可见性可分为可见水印和不可见水印(盲水印)...

国外顶流网红为流量拍摄性侵女学生?仅被封杀三月,回归仍爆火

曾经的油管之王,顶流网红DavidDobrik复出了。一切似乎都跟他因和成员灌酒性侵女学生被骂到退网之前一样:住在950万美元的豪宅,开着20万美元的阿斯顿马丁,每条视频都有数百万观看...人们仿佛...

JavaScript 内存泄漏排查方法_js内存泄漏及解决方法

一、概述本文主要介绍了如何通过Devtools的Memory内存工具排查JavaScript内存泄漏问题。先介绍了一些相关概念,说明了Memory内存工具的使用方式,然后介绍了堆快照的...

外贸独立站,网站优化的具体内容_外贸独立站,网站优化的具体内容有哪些

Wordpress网站优化,是通过优化代码、数据库、缓存、CSS/JS等内容,提升网站加载速度、交互性和稳定性。网站加载速度,是Google搜索引擎的第一权重,也是SEO优化的前提。1.优化渲染阻塞。...

这8个CSS工具可以提升编程速度_css用什么编译器

下面为大家推荐的这8个CSS工具,有提供函数的,有提供类的,有提取代码的,还有收集CSS的统计数据的……请花费两分钟的时间看完这篇文章,或许你会找到意外的惊喜,并且为你的编程之路打开了一扇新的大门。1...

vue的理解-vue源码 历史 简介 核心特性 和jquery区别 和 react对比

一、从历史说起Web是WorldWideWeb的简称,中文译为万维网我们可以将它规划成如下的几个时代来进行理解石器时代文明时代工业革命时代百花齐放时代石器时代石器时代指的就是我们的静态网页,可以欣...