LLM面面观之MoE 小说面面观作者简介
itomcoil 2024-12-22 18:53 22 浏览
1. 背景
根据本qiang~最新的趋势观察,基于MoE架构的开源大模型越来越多,比如马斯克的Grok-1(314B), Qwen1.5-MoE-A2.7B等,因此想探究一下MoE里面的部分细节。
此文是本qiang~针对大语言模型的MoE的整理,包括原理、流程及部分源码。
2. MoE原理
MoE的流行源于”欧洲的OpenAI” Mistral AI发布的论文及模型《Mixtral of Experts》,评测集上的效果吊打众多开源模型,如Llama 2 70B和GPT3.5。
《Mixtral of Experts》基础模型使用的是Mistral AI自研的Mistral 7B,该模型的特点包括:滑窗注意力(Sliding Window Aattention), 滚动缓冲区缓存(Rolling Buffer Cache)以及预填充-分块(Pre-fill and Chunking),具体细节可以查阅文末的论文地址。
本文以《Mixtral of Experts》为引子,探究MoE的相关细节,MoE的原理如下图所示:
(1) Transformers架构中的每一层中的FFN网络均替换为了8个FFN(专家),且由一个网关路由(gate router)进行控制
(2) 针对每一个token,每一层的网关路由仅选择其中的2个FFN(专家)来处理当前状态并进行加权输出
(3) 结果就是,每一个token访问了47B参数,但是在推理阶段仅仅使用了13B的激活参数(即,只使用2个专家,冻结其他6个专家)。
(4) 与Dropout机制对比,Dropout让部分神经元失活,而MoE是让部分专家失活。
3. 源码
本qiang~研读并尝试执行了Mistral官网的github推理代码,该代码框架非常适合新手,无他,只因其几乎只是在torch上层做的封装,很少引擎其他第三方库,不像transformers,功能强大,但不适合新手研读代码…
为了普适性,下面的代码截取了transformers框架中的代码。
首先看下通用Transformers中FFN中的代码模块,代码位置在transformers.models.mistral.modeling_mistral, 主要流程是:
(1) 先经过gate_proj和up_proj的2个[hidden_size, intermediate_size]的线性转换
(2) 使用激活函数对gate_proj进行激活
(3) 二者的内积再经过down_proj线性转换。
class MistralMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
再来看下MoE中的专家模块,代码位置在transformers.models.mixtral.modeling_mixtral,主要流程是:
(1) 首先经过网关路由self.gate
(2) 然后选择其中2个专家,并归一化
(3) 之后遍历每个专家网络,并按照expert_mask进行筛选
(4) 如果expert_mask有值,则选择指定部分的隐藏层进行FFN操作,且输出结果进行加权
(5) 最后原地增加先前初始化的最终结果变量final_hidden_states
class MixtralSparseMoeBlock(nn.Module): def __init__(self, config): super().__init__() self.hidden_dim = config.hidden_size self.ffn_dim = config.intermediate_size self.num_experts = config.num_local_experts self.top_k = config.num_experts_per_tok # gating self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)]) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """ """ batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) if top_x.shape[0] == 0: continue # in torch it is faster to index using lists than torch tensors top_x_list = top_x.tolist() idx_list = idx.tolist() # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None] # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits |
其中MixtralBlockSparseTop2MLP代码如下,可以看到和传统MistralMLP内容完全一致。
class MixtralBlockSparseTop2MLP(nn.Module): def __init__(self, config: MixtralConfig): super().__init__() self.ffn_dim = config.intermediate_size self.hidden_dim = config.hidden_size self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_states): current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) current_hidden_states = self.w2(current_hidden_states) return current_hidden_states |
4. MoE微调
由于MoE只是将每一层的FFN改变为了每一层的gate网关路由+8个FFN专家,且gate网关路由和8个专家内部均为线性运算,所以可以无缝地结合LoRA、QLoRA进行指令微调。
可以参考开源项目:https://github.com/yangjianxin1/Firefly
5. 答疑解惑
(1) 问:MoE 8*7B的模型是56B参数?
答:MoE 8*7B的参数量是47B,而不是56B,原因是每一层除了8个专家网络外,其他层均是复用的。
(2) 问:MoE的基础模型是Mistral 7B?
答:不是,MoE的模型架构与Mistral 7B相同,但其中的FFN替换为了8个FFN,且MoE是基于多语言数据集预训练而来的。
(3) MoE的稀疏性(sparse)体现在哪里?
答:在训练和推理时,同时只有两个专家网络会被激活,进行前向计算,其它专家网络处于失活状态。
6. 总结
一句话足矣~
本文主要针对大语言模型的MoE,包括原理及部分源码。
此外,建议大家可以针对源码进行运行,关于源码,欢迎大家一块交流。
7. 参考
(1) Mistral 7B:https://arxiv.org/pdf/2310.06825v1.pdf
(2) MoE: https://arxiv.org/pdf/2401.04088v1.pdf
(3) MoE开源指令微调框架Firefly: https://github.com/yangjianxin1/Firefly
相关推荐
- Excel新函数TEXTSPLIT太强大了,轻松搞定数据拆分!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!最近我把WPS软件升级到了版本号:12.1.0.15990的最新版本,最版本已经支持文本拆分函数TEXTSPLIT了,并...
- Excel超强数据拆分函数TEXTSPLIT,从入门到精通!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!今天跟大家分享的是Excel超强数据拆分函数TEXTSPLIT,带你从入门到精通!TEXTSPLIT函数真是太强大了,轻松...
- 看完就会用的C++17特性总结(c++11常用新特性)
-
作者:taoklin,腾讯WXG后台开发一、简单特性1.namespace嵌套C++17使我们可以更加简洁使用命名空间:2.std::variant升级版的C语言Union在C++17之前,通...
- plsql字符串分割浅谈(plsql字符集设置)
-
工作之中遇到的小问题,在此抛出问题,并给出解决方法。一方面是为了给自己留下深刻印象,另一方面给遇到相似问题的同学一个解决思路。如若其中有写的不好或者不对的地方也请不加不吝赐教,集思广益,共同进步。遇到...
- javascript如何分割字符串(javascript切割字符串)
-
javascript如何分割字符串在JavaScript中,您可以使用字符串的`split()`方法来将一个字符串分割成一个数组。`split()`方法接收一个参数,这个参数指定了分割字符串的方式。如...
- TextSplit函数的使用方法(入门+进阶+高级共八种用法10个公式)
-
在Excel和WPS新增的几十个函数中,如果按实用性+功能性排名,textsplit排第二,无函数敢排第一。因为它不仅使用简单,而且解决了以前用超复杂公式才能搞定的难题。今天小编用10个公式,让你彻底...
- Python字符串split()方法使用技巧
-
在Python中,字符串操作可谓是基础且关键的技能,而今天咱们要重点攻克的“堡垒”——split()方法,它能将看似浑然一体的字符串,按照我们的需求进行拆分,极大地便利了数据处理与文本解析工作。基本语...
- go语言中字符串常用的系统函数(golang 字符串)
-
最近由于工作比较忙,视频有段时间没有更新了,在这里跟大家说声抱歉了,我尽快抽些时间整理下视频今天就发一篇关于go语言的基础知识吧!我这我工作中用到的一些常用函数,汇总出来分享给大家,希望对...
- 无规律文本拆分,这些函数你得会(没有分隔符没规律数据拆分)
-
今天文章来源于表格学员训练营群内答疑,混合文本拆分。其实拆分不难,只要规则明确就好办。就怕规则不清晰,或者规则太多。那真是,Oh,mygod.如上图所示进行拆分,文字表达实在是有点难,所以小熊变身灵...
- Python之文本解析:字符串格式化的逆操作?
-
引言前面的文章中,提到了关于Python中字符串中的相关操作,更多地涉及到了字符串的格式化,有些地方也称为字符串插值操作,本质上,就是把多个字符串拼接在一起,以固定的格式呈现。关于字符串的操作,其实还...
- 忘记【分列】吧,TEXTSPLIT拆分文本好用100倍
-
函数TEXTSPLIT的作用是:按分隔符将字符串拆分为行或列。仅ExcelM365版本可用。基本应用将A2单元格内容按逗号拆分。=TEXTSPLIT(A2,",")第二参数设置为逗号...
- Excel365版本新函数TEXTSPLIT,专攻文本拆分
-
Excel中字符串的处理,拆分和合并是比较常见的需求。合并,当前最好用的函数非TEXTJOIN不可。拆分,Office365于2022年3月更新了一个专业函数:TEXTSPLIT语法参数:【...
- 站长在线Python精讲使用正则表达式的split()方法分割字符串详解
-
欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中使用正则表达式的split()方法分割字符串详解》。使用正则表达式分割字符串在Python中使用正则表达式的split(...
- Java中字符串分割的方法(java字符串切割方法)
-
技术背景在Java编程中,经常需要对字符串进行分割操作,例如将一个包含多个信息的字符串按照特定的分隔符拆分成多个子字符串。常见的应用场景包括解析CSV文件、处理网络请求参数等。实现步骤1.使用Str...
- 因为一个函数strtok踩坑,我被老工程师无情嘲笑了
-
在用C/C++实现字符串切割中,strtok函数经常用到,其主要作用是按照给定的字符集分隔字符串,并返回各子字符串。但是实际上,可不止有strtok(),还有strtok、strtok_s、strto...
- 一周热门
- 最近发表
- 标签列表
-
- ps像素和厘米换算 (32)
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)