百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

LLM面面观之MoE 小说面面观作者简介

itomcoil 2024-12-22 18:53 26 浏览

1. 背景

根据本qiang~最新的趋势观察,基于MoE架构的开源大模型越来越多,比如马斯克的Grok-1(314B), Qwen1.5-MoE-A2.7B等,因此想探究一下MoE里面的部分细节。

此文是本qiang~针对大语言模型的MoE的整理,包括原理、流程及部分源码

2. MoE原理

MoE的流行源于”欧洲的OpenAI” Mistral AI发布的论文及模型《Mixtral of Experts》,评测集上的效果吊打众多开源模型,如Llama 2 70B和GPT3.5。

《Mixtral of Experts》基础模型使用的是Mistral AI自研的Mistral 7B,该模型的特点包括:滑窗注意力(Sliding Window Aattention), 滚动缓冲区缓存(Rolling Buffer Cache)以及预填充-分块(Pre-fill and Chunking),具体细节可以查阅文末的论文地址。

本文以《Mixtral of Experts》为引子,探究MoE的相关细节,MoE的原理如下图所示:

(1) Transformers架构中的每一层中的FFN网络均替换为了8个FFN(专家),且由一个网关路由(gate router)进行控制

(2) 针对每一个token,每一层的网关路由仅选择其中的2个FFN(专家)来处理当前状态并进行加权输出

(3) 结果就是,每一个token访问了47B参数,但是在推理阶段仅仅使用了13B的激活参数(即,只使用2个专家,冻结其他6个专家)。

(4) 与Dropout机制对比,Dropout让部分神经元失活,而MoE是让部分专家失活

3. 源码

本qiang~研读并尝试执行了Mistral官网的github推理代码,该代码框架非常适合新手,无他,只因其几乎只是在torch上层做的封装,很少引擎其他第三方库,不像transformers,功能强大,但不适合新手研读代码…

为了普适性,下面的代码截取了transformers框架中的代码。

首先看下通用Transformers中FFN中的代码模块,代码位置在transformers.models.mistral.modeling_mistral, 主要流程是:

(1) 先经过gate_proj和up_proj的2个[hidden_size, intermediate_size]的线性转换

(2) 使用激活函数对gate_proj进行激活

(3) 二者的内积再经过down_proj线性转换。

class MistralMLP(nn.Module):

def __init__(self, config):

super().__init__()

self.config = config

self.hidden_size = config.hidden_size

self.intermediate_size = config.intermediate_size

self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)

self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)

self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)

self.act_fn = ACT2FN[config.hidden_act]


def forward(self, x):

return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


再来看下MoE中的专家模块,代码位置在transformers.models.mixtral.modeling_mixtral,主要流程是:

(1) 首先经过网关路由self.gate

(2) 然后选择其中2个专家,并归一化

(3) 之后遍历每个专家网络,并按照expert_mask进行筛选

(4) 如果expert_mask有值,则选择指定部分的隐藏层进行FFN操作,且输出结果进行加权

(5) 最后原地增加先前初始化的最终结果变量final_hidden_states

class MixtralSparseMoeBlock(nn.Module):


def __init__(self, config):

super().__init__()

self.hidden_dim = config.hidden_size

self.ffn_dim = config.intermediate_size

self.num_experts = config.num_local_experts

self.top_k = config.num_experts_per_tok


# gating

self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)


self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)])


def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:

""" """

batch_size, sequence_length, hidden_dim = hidden_states.shape

hidden_states = hidden_states.view(-1, hidden_dim)

# router_logits: (batch * sequence_length, n_experts)

router_logits = self.gate(hidden_states)


routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)

routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)

routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

# we cast back to the input dtype

routing_weights = routing_weights.to(hidden_states.dtype)


final_hidden_states = torch.zeros(

(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device

)


# One hot encode the selected experts to create an expert mask

# this will be used to easily index which expert is going to be sollicitated

expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)


# Loop over all available experts in the model and perform the computation on each expert

for expert_idx in range(self.num_experts):

expert_layer = self.experts[expert_idx]

idx, top_x = torch.where(expert_mask[expert_idx])


if top_x.shape[0] == 0:

continue


# in torch it is faster to index using lists than torch tensors

top_x_list = top_x.tolist()

idx_list = idx.tolist()


# Index the correct hidden states and compute the expert hidden state for

# the current expert. We need to make sure to multiply the output hidden

# states by `routing_weights` on the corresponding tokens (top-1 and top-2)

current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)

current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]


# However `index_add_` only support torch tensors for indexing so we'll use

# the `top_x` tensor here.

final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))

final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)

return final_hidden_states, router_logits

其中MixtralBlockSparseTop2MLP代码如下,可以看到和传统MistralMLP内容完全一致。

class MixtralBlockSparseTop2MLP(nn.Module):

def __init__(self, config: MixtralConfig):

super().__init__()

self.ffn_dim = config.intermediate_size

self.hidden_dim = config.hidden_size


self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)

self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)

self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)


self.act_fn = ACT2FN[config.hidden_act]


def forward(self, hidden_states):

current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)

current_hidden_states = self.w2(current_hidden_states)

return current_hidden_states


4. MoE微调

由于MoE只是将每一层的FFN改变为了每一层的gate网关路由+8个FFN专家,且gate网关路由和8个专家内部均为线性运算,所以可以无缝地结合LoRA、QLoRA进行指令微调

可以参考开源项目:https://github.com/yangjianxin1/Firefly

5. 答疑解惑

(1) 问:MoE 8*7B的模型是56B参数?

答:MoE 8*7B的参数量是47B,而不是56B,原因是每一层除了8个专家网络外,其他层均是复用的。

(2) 问:MoE的基础模型是Mistral 7B?

答:不是,MoE的模型架构与Mistral 7B相同,但其中的FFN替换为了8个FFN,且MoE是基于多语言数据集预训练而来的。

(3) MoE的稀疏性(sparse)体现在哪里?

答:在训练和推理时,同时只有两个专家网络会被激活,进行前向计算,其它专家网络处于失活状态。

6. 总结

一句话足矣~

本文主要针对大语言模型的MoE,包括原理及部分源码。

此外,建议大家可以针对源码进行运行,关于源码,欢迎大家一块交流。

7. 参考

(1) Mistral 7B:https://arxiv.org/pdf/2310.06825v1.pdf

(2) MoE: https://arxiv.org/pdf/2401.04088v1.pdf

(3) MoE开源指令微调框架Firefly: https://github.com/yangjianxin1/Firefly

相关推荐

Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)

在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...

Connect 2.0来了,还有Nuke和Maya新集成

ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...

Magicgui:不会GUI编程也能轻松构建Python GUI应用

什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...

Python入坑系列:桌面GUI开发之Pyside6

阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...

Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI

通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...

pyside2的基础界面(pyside2显示图片)

今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...

Python GUI开发:打包PySide2应用(python 打包pyc)

之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...

使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂

PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...

pycharm中conda解释器无法配置(pycharm安装的解释器不能用)

之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...

Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建

Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...

Python操作系统资源管理与监控(python调用资源管理器)

在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...

本地部署开源版Manus+DeepSeek创建自己的AI智能体

1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...

一文教会你,搭建AI模型训练与微调环境,包学会的!

一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...

使用scikit-learn为PyTorch 模型进行超参数网格搜索

scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...