Flask 数据可视化_flourish数据可视化
itomcoil 2025-08-26 17:57 3 浏览
数据可视化是数据处理中的重要部分,前面我们了解了 Flask 的开发和部署,如何用 Flask 做数据可视化呢?今天我们来了解一下。
Python 语言极富表达力,并且拥有众多的数据分析库和框架,是数据分析的首选;
echarts,最初由百度团队开发,现在已独立成 Apache 旗下一款国际化产品,是基于 Web 的数据可视化框架,API 简单明了,应用极为广泛;
Python 和 echarts 的完美结合就是 pyecharts
pyecharts 简介
pyecharts 使得可以用 Python 语言,完成 echarts 中对图表的各种操作,并且让编写代码更便利
pyecharts 中的概念和 echarts 是想通的,对于刚接触的同学,无论从 pyecharts 还是 echarts 开始了解都可以
图表类
pyecharts 中的图表都是类,都继承自 Base 基类,构造函数接受一个 init_opts 参数,用于设置图表的属性
意下是常用 API 接口:
- add_js_func:将 js 脚本附加在图表 Html 中
- set_global_opts:设置图表属性
- render:渲染出图表的 Html 文件
- dump_options_with_quotes:将图表所有设置导出为 json,用于前后分离
全局配置
pyecharts 将图表中和数据无关的属性,集中在全局配置中,也就是这些配置是服务于整个图表的,比如 标题、图例、工具栏、数据提示框、区域缩放等,每种配置项,都是一个 BasicOpts 的子类,通过图标对象的 set_global_opts 方法设置,例如:
from pyecharts.charts import Bar
bar = Bar()
bar.set_global_opts(
title_opts=opts.TitleOpts(
title="Bar-基本示例",
subtitle="我是副标题",
pos_left= "center",
pos_top="top"),
legend_opts=opts.LegendOpts(
pos_top="60"
))
系列配置
系列(series)是很常见的名词。在 echarts 里,系列(series)是指:一组数值以及他们映射成的图。“系列”这个词原本可能来源于“一系列的数据”,而在 echarts 中取其扩展的概念,不仅表示数据,也表示数据映射成为的图。所以,一个 系列 包含的要素至少有:一组数值、图表类型(series.type)、以及其他的关于这些数据如何映射成图的参数。
pyecharts 系列配置 和 全局配置 类似,用于对图表中 系列 进行设置,比如设置 系列 样式、坐标系、颜色、形状、特殊点,以及等。
例如,柱状图上不显示标签:
from pyecharts.charts import Bar
bar = Bar()
bar.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
pyecharts 安装
首先安装 pyecharts:
pip install pyecharts
安装完后,在 Python 交互式环境( REPL )中,可以查看版本信息:
>>> import pyecharts
>>> print(pyecharts.__version__)
1.7.0
Flask 集成
前面我们了解了 Flask 的开发,对于一个应用来说,需要有 视图函数 , 模板、和 路由,echarts 是一个前台框架,只要将页面做成模板,然后将数据写入模板就好,这样确实是可以做的,不过 pyecharts 已经处理了大部分工作,只要在 Python 中开发代码就好了。
pyecharts 和 Flask 集成,四种形式,分别是 模板渲染、前后分离、定时全集更新 和 增量数据更新
模板渲染
模板渲染是比较方便的,可以不用写前台页面,因为 pyecharts 已经定义了很多模板,以及模板宏,调用很方便。
第一步 下载 pyecharts 的模板
可以从 github 的 pyecharts 项目中获取,
https://github.com/pyecharts/pyecharts
如果用 pip 安装的 pyecharts ,可以在安装环境中的模块目录下找到,即 Python home 中的
Lib/site-packages/pyecharts/render/templates
第二步 将模板放入项目目录下
在我们的 Flask 应用的目录的 templates 模板下,创建 pyecharts 目录,来存放复制的 pyecharts 模板。
这样可以避免与 Flask 应用中我们自建的模板混淆。
第三步 渲染图表
我们将业务逻辑写入都写在 Flask 启动脚本 app.py 中:
from flask import Flask # 引入 Flask
from jinja2 import Markup, Environment, FileSystemLoader
from pyecharts.globals import CurrentConfig
CurrentConfig.GLOBAL_ENV = Environment(loader=FileSystemLoader("./templates/pyecharts"))
from pyecharts import options as opts
from pyecharts.charts import Bar
app = Flask(__name__)
def bar_base() -> Bar: # -> 表示要返回的是类型
c = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
.add_yaxis("商家B", [15, 25, 16, 55, 48, 8])
.set_global_opts(
title_opts=opts.TitleOpts(
title="Bar-基本示例",
subtitle="我是副标题"
)
)
)
return c
@app.route("/")
def index():
c = bar_base()
return Markup(c.render_embed())
- 首先引入 Flask、jinjia2 和 pyecharts
- 为全局变量设置 jinjia2 环境,指定模板路径为 /templates/pyecharts 即我们存放 pyecharts 模板的路径。这样不会影响 Flask 的默认模板路径
- 定义图表工厂方法,返回一个图表实例,图表实例支持点串联操作
- add_xaxis 添加 X 轴显示的项目
- add_yaxis 添加 Y 轴数据分类和数值,相当于分组,可以添加多个
- set_global_opts 设置图标的全局配置
- 视图函数中,用图表工厂方法 bar_base 创建一个图表实体,返回 render_embed 经过 jinjia2 的渲染结果
- render_embed 返回的是合成好的 html 可以直接返回给前台做展示
前后分离
模板渲染虽然方便,但是不透灵活,比如要修改已有页面,加上一个图表,这是可以考虑用前后分离的方式
前两步和 模板渲染 中的一样
第三步 创建前台页面
创建一个 html 文件 index.html,存放在 templates 文件夹下,内容和 echarts 一样,主要是需要引用 echarts 框架,和 jQuery 框架(其他的Ajax框架均可),定义显示图表的 Dom,最后在页面加载完成回调方法中,通过 ajax 请求后台数据,异步将获取到的图标数据设置到图表中:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>我的图表</title>
<script src="https://cdn.bootcss.com/jquery/3.0.0/jquery.min.js"></script>
<script type="text/javascript" src="https://assets.pyecharts.org/assets/echarts.min.js"></script>
</head>
<body>
<div id="bar" style="width:1000px; height:600px;"></div>
<script>
$(
function () {
var chart = echarts.init(document.getElementById('bar'), 'white', {renderer: 'canvas'});
$.ajax({
type: "GET",
url: "/barChart",
dataType: 'json',
success: function (result) {
chart.setOption(result);
}
});
}
)
</script>
</body>
</html>
第四步 编写后台相应方法
前台页面中定义了 ajax 请求路径是 barChart,我们就写一个处理该请求的视图方法:
@app.route("/barChart")
def bar_chart():
c = bar_base()
return c.dump_options_with_quotes()
- 定义图表的方式和 模板渲染一样
- 视图方法中,用工厂方法创建视图对象,返回 dump_options_with_quotes 的结果
- dump_options_with_quotes 将图标的配置集成为前台需要的格式,返回 JSON 数据
最后启动 Flask 应用,在 <localhost:5000> 就能看到效果
前后分离的方式更常用,可以让前台的展示发挥最大的优势,Flask 后台提供图表需要的数据和设置
定时全量更新
有很多场景需要实时更新图表内容,实现方式是将 前后分离 的方式,获取后台图标配置的请求写成定时调用的,将得到的图标数据通过 setOption 设置到图表对象中。
后台视图方法每次重新根据查询条件,获取新的数据,设置到图表对象中,再用 dump_options_with_quotes 将设置导出,返回给前台
定时增量更新
增量更新在数据监控的场景中很常用,实现方式和全量更新有些差别
首先需要得到一个图表的设置,这个和全量更新一样
然后将获取增量数据的方法作为定时的,在回调函数中,为图标设置增量数据,与全量更新不同的是只更新 系列数据,echarts 会处理好图表的变化,包括动画效果
前台获取增量数据并更新的方法:
function getDynamicData() {
$.ajax({
type: "GET",
url: "/lineDynamicData",
dataType: "json",
success: function (result) {
old_data.push([result.name, result.value]);
chart.setOption({
series: [{data: old_data}]
});
}
});
}
old_data 图表数据的应用:
old_data = chart.getOption().series[0].data;
如果需要同时将最早的数据清除掉,只需要将需要去除的数据从 old_data 中删除就行:
old_data.shift(); // 清楚最早的一个数据
后台数据处理
根据图表数据要求,每次前台请求增量数据时,将最新的数据返回
这里需要注意到是增量数据范围,即怎么确定增量数据
常用数据产生时间 或者 数据 id 作为增量条件,例如图表展示的是在线用户数变化曲线,在线用户数,会定时存放在库表中,每条记录都有个 id,每次请求增量数据时,将已经获取到数据的最大的 id 值作为请求参数,后台就可以获取该主键值后面的数据,作为增量数据。
渲染图片
在有些场景下,需要生成图表图片,Python 有很多图表处理工具,可以做图像生成。
对 echarts 来说,也有生成图片的功能,不过需要在浏览器中,pyecharts 作为 Python 和 echarts 的桥梁,支持后端生成图表图片。
pyecharts 提供了 selenium, phantomjs 和 pyppeteer 三种方式渲染图片,其原理是用无头浏览器,渲染图表页面后,用 echarts 生成图片功能,生成图片。
这里我们用 selenium 做演示
安装 snapshot-selenium
snapshot-selenium 是 pyecharts + selenium 渲染图片的扩展,selenium 需要配置 browser driver,推荐使用 Chrome 浏览器,可以开启 headless 模式,具体配置可参考 selenium-python 相关介绍。
使用
pyecharts 使用 make_snapshot 直接生成图片,支持生成图片相关的配置,如 echarts html 文件名,输出文件名,浏览器种类等:
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.render import make_snapshot
from snapshot_selenium import snapshot
def bar_chart() -> Bar:
c = (
Bar()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])
.reversal_axis()
.set_series_opts(label_opts=opts.LabelOpts(position="right"))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-测试渲染图片"))
)
return c
make_snapshot(snapshot, bar_chart().render(), "bar0.png")
- 先引入 make_snapshot 和 snapshot
- 定义图表工厂方法
- 调用 make_snapshot 导出图片,第一个参数是渲染扩展工具,第二个是生成的 Html 文件路径,第三个参数是生成的图片文件路径
- 由于是通过无头浏览器中模拟的,图表复杂或者数据多时,渲染可能较慢,可以通过 make_snapshot 命名参数 delay 来设置等待时间,默认为 2 秒
总结
今天介绍了使用 pyecharts 实现数据可视化的方法,并描述了如何与 Flask 集成,以及几种生成图表的方式,可以尝试一下,以便做出更好玩更有用的 Flask 应用。
相关推荐
- 编程学子看过来,竞赛刷题网站推荐
-
2022年编程竞赛已经公布,想要在今年取得竞赛成绩的学生,一定要把握寒假时间,学习知识的同时通过刷题,巩固所学知识,提升解题能力。小编为大家推荐几个刷题网站,想要竞赛的学生一定不要错过。USACO美国...
- 给大家推荐些好的c语言代码的网站
-
C语言,那就来推荐几个吧,部分含有C++:1、TheLinuxKernelArchives(kernel.org)Linux内核源码,仅限于C,但内核庞大,不太适合新手;2、redis(redi...
- 推荐几个编程入门学习网站_比较好的编程自学网站
-
有一些刚上大学的朋友和想对编程感兴趣的朋友经常会让我推荐学习网站,下面几个是我认为零基础学编程比较好的网站,希望大家都有收获!1.W3schoolhttp://www.w3school.com.c...
- 10个最值得收藏的编程学习网站_有什么学编程的网站
-
程序员是一个需要不断学习的职业。幸运的是,在这个互联网时代,知识就在那里,等着我们去获取。以下我列举一些免费的编程学习网站包含多个开发语言Java、php、html、javascript等多个。1、h...
- 6个超酷的练习算法,学习编程的网站
-
在不了解算法的前提下,您无法通过Google或Facebook的采访。那么为什么不现在学习。我是一位拥有15年以上经验的程序员。从高中开始的第一年,我在算法上学习和工作很多。在我毕业之前,我一直...
- 在线 python 编程的网站_python3在线编程,python3在线编译器,在线编辑器
-
以下是一些提供在线Python编程环境的网站:1.Repl.it:Repl.it提供了一个多语言在线编程平台,您可以使用它在任何地方编写、运行、共享代码。Repl.it支持多种编程语言,包括Pyth...
- 推荐 7 个能过招全球程序员的编程挑战网站,欢迎挑战!
-
作为程序员的你,是不是经常估不准自己的编程水平?下面推荐7个能过招全球程序员的编程挑战网站,助你磨练技巧,提升技能,最终问鼎代码江湖!1.HackerRank你可以参加各种编码竞赛,比如算法、数学...
- 盘点 20 个编程学习教程网站,建议收藏
-
欢迎关注@程序员柠檬橙私信回复「1024」获取海量编程学习资源!如果你想学习编程,现在互联网这么方便,不用着急报名培训班,有很多高质量的编程学习资源网站可供你学习,程序员日常浏览的技术教程网站有哪些...
- Flask 数据可视化_flourish数据可视化
-
数据可视化是数据处理中的重要部分,前面我们了解了Flask的开发和部署,如何用Flask做数据可视化呢?今天我们来了解一下。Python语言极富表达力,并且拥有众多的数据分析库和框架,是数据...
- 【python 工具】selenium 浏览器操作
-
selenium的安装步骤:1.安装selenium,打开cmd控制台pipinstallselenium2.安装驱动程序(我这里安装的是chromedriver),用来启动chrome浏览器...
- 可视化爬虫工具,EasySpider软件体验
-
现在提起爬虫,大家可能会联想到Python语言,然后就是各种使用无头浏览器去网页上爬取数据,使用Python的过程相较于使用其他语言来说,简单了不少。但毕竟是编程语言,也需要去学习来适配各种网...
- cursor+mcp+playwright,让AI给你推荐五一旅游胜地
-
阅读本文前提当你已了解mcp是什么,若不知,猛击:https://github.com/modelcontextprotocol/servers。最近有个小需求,根据用户输入内容,使用大模型来理解用户...
- Cursor+Claude+Playwright:AI 让自动化测试效率暴涨,快到飞起!
-
一、引言随着AI时代的到来,软件测试变得越来越复杂,如何高效、准确地进行自动化测试成了每一个开发团队必须面对的问题。在日常工作中,测试工作常常面临各种挑战,比如功能复杂、需求频繁变更、时间紧迫等。传统...
- 推荐一个检测 JS 内存泄漏的神器_js内存泄漏的几种情况
-
大家好,我是Echa哥。作为一名Web应用程序开发者,排查和修复JavaScript代码的内存泄漏一直是最困扰我的问题之一。最近,Meta开源了一款检测JavaScript代码内存泄漏...
- Python+Playwright自动化实战:高效爬虫全攻略
-
一、为什么选择Playwright?在信息爆炸的时代,数据获取能力直接决定内容生产效率。Playwright作为微软开源的新型自动化工具,凭借以下优势成为技术创作者的新宠:支持Chromium/Web...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)