百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

苹果MacOs能不能玩儿机器/深度(ml/dl)学习(Python3.10)

itomcoil 2024-12-07 13:24 25 浏览

坊间有传MacOs系统不适合机器(ml)学习和深度(dl)学习,这是板上钉钉的刻板印象,就好像有人说女生不适合编程一样的离谱。现而今,无论是Pytorch框架的MPS模式,还是最新的Tensorflow2框架,都已经可以在M1/M2芯片的Mac系统中毫无桎梏地使用GPU显卡设备,本次我们来分享如何在苹果MacOS系统上安装和配置Tensorflow2框架(CPU/GPU)。

Tensorflow2深度学习环境安装和配置

首先并不需要任何虚拟环境,直接本地安装Python3.10即可,请参见:一网成擒全端涵盖,在不同架构(Intel x86/Apple m1 silicon)不同开发平台(Win10/Win11/Mac/Ubuntu)上安装配置Python3.10开发环境 ,这里不再赘述。

随后安装Tensorflow本体:

pip3 install tensorflow-macos

这里系统会自动选择当前Python版本的Tensorflow安装包:

?  ~ pip install tensorflow-macos
Collecting tensorflow-macos
  Downloading tensorflow_macos-2.12.0-cp310-cp310-macosx_12_0_arm64.whl (200.8 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 200.8/200.8 MB 4.7 MB/s eta 0:00:00

安装包大小为200兆左右,如果下载不了,可以选择在pip官网直接下载基于python3.10的安装包:pypi.org/project/tensorflow-macos/#files

然后直接将whl文件拖拽到终端安装即可。

接着安装Tensorflow的GPU插件:tensorflow-metal,它是一个TensorFlow的后端,使用苹果的Metal图形API来加速神经网络计算。Metal是一种高性能图形和计算API,专门为苹果设备的GPU设计,可以实现更快的神经网络计算。使用tensorflow-metal可以显著提高在苹果设备上运行TensorFlow的性能,尤其是在使用Macs M1和M2等基于苹果芯片的设备时。

pip3 install --user tensorflow-metal

注意这里安装命令必须带上--user参数,否则可能会报这个错误:

Non-OK-status: stream_executor::MultiPlatformManager::RegisterPlatform( std::move(cplatform)) status: INTERNAL: platform is already registered with name: "METAL"

安装好之后,在Python终端运行命令:

import tensorflow
tensorflow.config.list_physical_devices()

程序返回:

>>> import tensorflow
>>> tensorflow.config.list_physical_devices()
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'), PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

可以看到,Tensorflow用于计算的物理设备既支持CPU,也支持GPU,也就是显卡。

接着,在编写一个完整的测试脚本 test.py:

import sys
import tensorflow.keras
import pandas as pd
import sklearn as sk
import scipy as sp
import tensorflow as tf
import platform
print(f"Python Platform: {platform.platform()}")
print(f"Tensor Flow Version: {tf.__version__}")
print(f"Keras Version: {tensorflow.keras.__version__}")
print()
print(f"Python {sys.version}")
print(f"Pandas {pd.__version__}")
print(f"Scikit-Learn {sk.__version__}")
print(f"SciPy {sp.__version__}")
gpu = len(tf.config.list_physical_devices('GPU'))>0
print("GPU is", "available" if gpu else "NOT AVAILABLE")

这里打印出深度学习场景下常用的库和版本号:

?  chatgpt_async git:(main) ? /opt/homebrew/bin/python3.10 "/Users/liuyue/wodfan/work/chatgpt_async/tensof_test.py"
Python Platform: macOS-13.3.1-arm64-arm-64bit
Tensor Flow Version: 2.12.0
Keras Version: 2.12.0

Python 3.10.9 (main, Dec 15 2022, 17:11:09) [Clang 14.0.0 (clang-1400.0.29.202)]
Pandas 1.5.2
Scikit-Learn 1.2.0
SciPy 1.10.0
GPU is available

一望而知,在最新的macOS-13.3.1系统中,基于Python3.10.9玩儿Tensorflow2.1没有任何问题。

至此,Tensorflow2就配置好了。

Tensorflow框架GPU和CPU测试

为什么一定要让Tensorflow支持GPU?GPU或图形处理单元与CPU类似,同样具有许多核心,允许它们同时进行更快的计算(并行性)。这个特性非常适合执行大规模的数学计算,如计算图像矩阵、计算特征值、行列式等等。

简而言之,GPU可以以并行方式运行代码并获得简明的结果,同时由于能够处理高强度的计算,因此可以比CPU更快的获得计算结果。

这里我们通过CIFAR-10项目进行测试,TensorFlow CIFAR-10项目是一个经典的计算机视觉项目,旨在训练一个模型,能够对CIFAR-10数据集中的图像进行分类。CIFAR-10数据集包含60,000张32x32像素的彩色图像,分为10个类别,每个类别包含6,000张图像。该项目的目标是训练一个深度神经网络模型,能够对这些图像进行准确的分类:

import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
(X_train, y_train), (X_test, y_test) = keras.datasets.cifar10.load_data()

X_train_scaled = X_train/255
X_test_scaled = X_test/255
# one hot encoding labels
y_train_encoded = keras.utils.to_categorical(y_train, num_classes = 10, dtype = 'float32')
y_test_encoded = keras.utils.to_categorical(y_test, num_classes = 10, dtype = 'float32')

def get_model():
    model = keras.Sequential([
        keras.layers.Flatten(input_shape=(32,32,3)),
        keras.layers.Dense(3000, activation='relu'),
        keras.layers.Dense(1000, activation='relu'),
        keras.layers.Dense(10, activation='sigmoid')    
    ])
    model.compile(optimizer='SGD',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
    return model

首先测试CPU性能:

%%timeit -n1 -r1
# CPU
with tf.device('/CPU:0'):
    model_cpu = get_model()
    model_cpu.fit(X_train_scaled, y_train_encoded, epochs = 10)

这段代码使用了%%timeit -n1 -r1魔术命令来测试在CPU上训练模型的时间。-n1表示只运行一次,-r1表示只运行一轮。如果没有指定这些参数,则会运行多次并计算平均值。/CPU:0指的是第一个CPU(如果计算机只有一个CPU,则是唯一的CPU)。

这里使用get_model()函数获取模型,使用model_cpu.fit()方法在CPU上训练模型,使用X_train_scaled和y_train_encoded作为输入数据,并在10个epoch内进行训练。最后,使用%%timeit命令来测试训练模型所需的时间,以便比较不同设备的性能。

程序返回:

50000/50000 [==========================] - 80s 2ms/sample

14min 9s

需要14分钟。

接着测试GPU性能:

%%timeit -n1 -r1
# GPU
with tf.device('/GPU:0'):
    model_gpu = get_model()
    model_gpu.fit(X_train_scaled, y_train_encoded, epochs = 10)

程序返回:

50000/50000 [==========================] - 11s 227us/sample

1min 55s

一分多钟,很明显在GPU上训练模型比在CPU上训练模型更快,因为GPU可以同时处理多个任务。

结语

苹果MacOs系统可以承担深度学习任务,但术业有专攻,算力层面还是比不上配置N卡的其他平台,这是不争的事实。没错,更好的选择是RTX3090,甚至是4090,但一块RTX4090显卡的价格是1500刀左右,这还意味着CPU、内存、主板和电源都得单买,而一台m2芯片的Mac book air的价格是多少呢?




相关推荐

Excel新函数TEXTSPLIT太强大了,轻松搞定数据拆分!

我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!最近我把WPS软件升级到了版本号:12.1.0.15990的最新版本,最版本已经支持文本拆分函数TEXTSPLIT了,并...

Excel超强数据拆分函数TEXTSPLIT,从入门到精通!

我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!今天跟大家分享的是Excel超强数据拆分函数TEXTSPLIT,带你从入门到精通!TEXTSPLIT函数真是太强大了,轻松...

看完就会用的C++17特性总结(c++11常用新特性)

作者:taoklin,腾讯WXG后台开发一、简单特性1.namespace嵌套C++17使我们可以更加简洁使用命名空间:2.std::variant升级版的C语言Union在C++17之前,通...

plsql字符串分割浅谈(plsql字符集设置)

工作之中遇到的小问题,在此抛出问题,并给出解决方法。一方面是为了给自己留下深刻印象,另一方面给遇到相似问题的同学一个解决思路。如若其中有写的不好或者不对的地方也请不加不吝赐教,集思广益,共同进步。遇到...

javascript如何分割字符串(javascript切割字符串)

javascript如何分割字符串在JavaScript中,您可以使用字符串的`split()`方法来将一个字符串分割成一个数组。`split()`方法接收一个参数,这个参数指定了分割字符串的方式。如...

TextSplit函数的使用方法(入门+进阶+高级共八种用法10个公式)

在Excel和WPS新增的几十个函数中,如果按实用性+功能性排名,textsplit排第二,无函数敢排第一。因为它不仅使用简单,而且解决了以前用超复杂公式才能搞定的难题。今天小编用10个公式,让你彻底...

Python字符串split()方法使用技巧

在Python中,字符串操作可谓是基础且关键的技能,而今天咱们要重点攻克的“堡垒”——split()方法,它能将看似浑然一体的字符串,按照我们的需求进行拆分,极大地便利了数据处理与文本解析工作。基本语...

go语言中字符串常用的系统函数(golang 字符串)

最近由于工作比较忙,视频有段时间没有更新了,在这里跟大家说声抱歉了,我尽快抽些时间整理下视频今天就发一篇关于go语言的基础知识吧!我这我工作中用到的一些常用函数,汇总出来分享给大家,希望对...

无规律文本拆分,这些函数你得会(没有分隔符没规律数据拆分)

今天文章来源于表格学员训练营群内答疑,混合文本拆分。其实拆分不难,只要规则明确就好办。就怕规则不清晰,或者规则太多。那真是,Oh,mygod.如上图所示进行拆分,文字表达实在是有点难,所以小熊变身灵...

Python之文本解析:字符串格式化的逆操作?

引言前面的文章中,提到了关于Python中字符串中的相关操作,更多地涉及到了字符串的格式化,有些地方也称为字符串插值操作,本质上,就是把多个字符串拼接在一起,以固定的格式呈现。关于字符串的操作,其实还...

忘记【分列】吧,TEXTSPLIT拆分文本好用100倍

函数TEXTSPLIT的作用是:按分隔符将字符串拆分为行或列。仅ExcelM365版本可用。基本应用将A2单元格内容按逗号拆分。=TEXTSPLIT(A2,",")第二参数设置为逗号...

Excel365版本新函数TEXTSPLIT,专攻文本拆分

Excel中字符串的处理,拆分和合并是比较常见的需求。合并,当前最好用的函数非TEXTJOIN不可。拆分,Office365于2022年3月更新了一个专业函数:TEXTSPLIT语法参数:【...

站长在线Python精讲使用正则表达式的split()方法分割字符串详解

欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中使用正则表达式的split()方法分割字符串详解》。使用正则表达式分割字符串在Python中使用正则表达式的split(...

Java中字符串分割的方法(java字符串切割方法)

技术背景在Java编程中,经常需要对字符串进行分割操作,例如将一个包含多个信息的字符串按照特定的分隔符拆分成多个子字符串。常见的应用场景包括解析CSV文件、处理网络请求参数等。实现步骤1.使用Str...

因为一个函数strtok踩坑,我被老工程师无情嘲笑了

在用C/C++实现字符串切割中,strtok函数经常用到,其主要作用是按照给定的字符集分隔字符串,并返回各子字符串。但是实际上,可不止有strtok(),还有strtok、strtok_s、strto...