Pandas:让你像写SQL一样做数据分析
itomcoil 2025-09-18 01:24 2 浏览
1. 引言
Pandas是一个开源的Python数据分析库。Pandas把结构化数据分为了三类:
- Series,1维序列,可视作为没有column名的、只有一个column的DataFrame;
- DataFrame,同Spark SQL中的DataFrame一样,其概念来自于R语言,为多column并schema化的2维结构化数据,可视作为Series的容器(container);
- Panel,为3维的结构化数据,可视作为DataFrame的容器;
DataFrame较为常见,因此本文主要讨论内容将为DataFrame。DataFrame的生成可通过读取纯文本、Json等数据来生成,亦可以通过Python对象来生成:
import pandas as pd
import numpy as np
df = pd.DataFrame({'total_bill': [16.99, 10.34, 23.68, 23.68, 24.59],
'tip': [1.01, 1.66, 3.50, 3.31, 3.61],
'sex': ['Female', 'Male', 'Male', 'Male', 'Female']})
对于DataFrame,我们可以看到其固有的一些属性:
# data type of columns
print df.dtypes
# indexes
print df.index
# return pandas.Index
print df.columns
# each row, return array[array]
print df.values
- index,为行索引
- columns,为列名称(label)
- dtype,为列数据类型
2. SQL操作
官方Doc给出了部分SQL的Pandas实现。在此基础上,本文给出了一些扩充说明。以下内容基于Python 2.7 + Pandas 0.18.1的版本。
select
SQL中的select是根据列的名称来选取;Pandas则更为灵活,不但可根据名称选取,还可以根据列所在的position选取。相关函数如下:
- loc,基于列label,可选取特定行(根据行index);
- iloc,基于行/列的position;
print df.loc[1:3, ['total_bill', 'tip']]
print df.loc[1:3, 'tip': 'total_bill']
print df.iloc[1:3, [1, 2]]
print df.iloc[1:3, 1: 3]
- at,根据指定行index及列label,快速定位DataFrame的元素;
- iat,与at类似,不同的是根据position来定位的;
print df.at[3, 'tip']
print df.iat[3, 1]
- ix,loc与iloc的混合体,既支持label也支持position;
print df.ix[1:3, [1, 2]]
print df.ix[1:3, ['total_bill', 'tip']]
为了做行/列的选取,有更为简洁的表示:
print df[1: 3]
print df[['total_bill', 'tip']]
# print df[1:2, ['total_bill', 'tip']] # TypeError: unhashable type
where
Pandas实现where filter,较为常用的办法为df[df[colunm] boolean expr]
,比如:
print df[df['sex'] == 'Female']
print df[df['total_bill'] > 20]
# or
print df.query('total_bill > 20')
在where子句中常常会搭配and, or, in, not关键词,Pandas中也有对应的实现:
# and
print df[(df['sex'] == 'Female') & (df['total_bill'] > 20)]
# or
print df[(df['sex'] == 'Female') | (df['total_bill'] > 20)]
# in
print df[df['total_bill'].isin([21.01, 23.68, 24.59])]
# not
print df[-(df['sex'] == 'Male')]
print df[-df['total_bill'].isin([21.01, 23.68, 24.59])]
distinct
drop_duplicates根据某列对dataframe进行去重:
df.drop_duplicates(subset=['sex'], keep='first', inplace=True)
包含参数:
- subset,为选定的列做distinct,默认为所有列;
- keep,值选项{'first', 'last', False},保留重复元素中的第一个、最后一个,或全部删除;
- inplace ,默认为False,返回一个新的dataframe;若为True,则返回去重后的原dataframe
group
group一般会配合合计函数(Aggregate functions)使用,比如:count、avg等。Pandas对合计函数的支持有限,有count和size函数实现SQL的count:
print df.groupby('sex').size
print df.groupby('sex').count
print df.groupby('sex')['tip'].count
对于多合计函数,
select sex, max(tip), sum(total_bill) as total
from tip_tb
group by sex;
实现在agg函数中指定dict:
print df.groupby('sex').agg({'tip': np.max, 'total_bill': np.sum})
# distinct count
print df.groupby('tip').agg({'sex': pd.Series.nunique})
as
SQL中使用as修改列的别名,Pandas也支持这种修改:
# first implementation
df.columns = ['total', 'pit', 'xes']
# second implementation
df.rename(columns={'total_bill': 'total', 'tip': 'pit', 'sex': 'xes'}, inplace=True)
我们容易发现,第一种方法的修改是有问题的,因为其是按照列position逐一替换的。因此,我们推荐第二种方法。
join
Pandas中join的实现也有两种:
# 1.
df.join(df2, how='left'...)
# 2.
pd.merge(df1, df2, how='left', left_on='app', right_on='app')
第一种方法是按DataFrame的index进行join的,而第二种方法才是按on指定的列做join。Pandas满足left、right、inner、full outer四种join方式。
order
Pandas中支持多列order,并可以调整不同列的升序/降序,而不需统一指定desc/asc:
print df.sort_values(['total_bill', 'tip'], ascending=[False, True])
top
对于全局的top:
print df.nlargest(3, columns=['total_bill'])
对于分组top,MySQL的实现(采用自join的方式):
select a.sex, a.tip
from tips_tb a
where (
select count(*)
from tips_tb b
where b.sex = a.sex and b.tip > a.tip
) < 2
order by a.sex, a.tip desc;
Pandas的等价实现,思路与上类似:
# 1.
df.assign(rn=df.sort_values(['total_bill'], ascending=False)
.groupby('sex')
.cumcount+1)\
.query('rn < 3')\
.sort_values(['sex', 'rn'])
# 2.
df.assign(rn=df.groupby('sex')['total_bill']
.rank(method='first', ascending=False)) \
.query('rn < 3') \
.sort_values(['sex', 'rn'])
自定义
除了上述SQL操作外,Pandas提供对每列/每一元素做自定义操作,为此而设计以下三个函数:
- map(func),为Series的函数,DataFrame不能直接调用,需取列后再调用;
- apply(func),对DataFrame中的某一行/列进行func操作;
- applymap(func),为element-wise函数,对每一个元素做func操作
print df['tip'].map(lambda x: x - 1)
print df[['total_bill', 'tip']].apply(sum)
print df.applymap(lambda x: x.upper if type(x) is str else x)
3. 实战
环比增长
现有两个月APP的UV数据,要得到月UV增长量;等价于两个Dataframe left join后按指定列做减操作:
def chain(current, last):
df1 = pd.read_csv(current, names=['app', 'tag', 'uv'], sep='\t')
df2 = pd.read_csv(last, names=['app', 'tag', 'uv'], sep='\t')
df3 = pd.merge(df1, df2, how='left', on='app')
df3['uv_y'] = df3['uv_y'].map(lambda x: 0.0 if pd.isnull(x) else x)
df3['growth'] = df3['uv_x'] - df3['uv_y']
return df3[['app', 'growth', 'uv_x', 'uv_y']].sort_values(by='growth', ascending=False)
差集
对于给定的列,一个Dataframe过滤另一个Dataframe该列的值;相当于集合的差集操作:
def difference(left, right, on):
"""
difference of two dataframes
:param left: left dataframe
:param right: right dataframe
:param on: join key
:return: difference dataframe
"""
df = pd.merge(left, right, how='left', on=on)
left_columns = left.columns
col_y = df.columns[left_columns.size]
df = df[df[col_y].isnull]
df = df.ix[:, 0:left_columns.size]
df.columns = left_columns
return df
相关推荐
- Python GUI 编程入门教程 第11章:数据库操作与文件管理
-
11.1数据库操作:与SQLite结合在许多应用中,数据的存储和管理是必不可少的部分。Tkinter本身并不自带数据库支持,但你可以通过Python的sqlite3模块来将数据库功能集成到Tkint...
- Python GUI 编程入门教程 第12章:图形绘制与用户交互
-
12.1图形绘制:Canvas控件Tkinter提供了一个非常强大的控件Canvas,可以用来绘制各种图形,如线条、矩形、圆形等。通过Canvas控件,用户可以在GUI中添加绘图、图像和其他复杂的内...
- Python GUI 编程入门教程 第16章:图形绘制与动画效果
-
16.1使用Canvas绘制图形Tkinter的Canvas控件是一个非常强大的绘图工具,可以用来绘制各种基本图形,如线条、矩形、圆形、文本等。Canvas允许你通过编程创建和修改图形元素,非常适合...
- Python GUI 编程入门教程 第10章:高级布局与界面美化
-
10.1高级布局管理:使用grid和placeTkinter提供了三种常用的布局管理方式:pack、grid和place。在本章中,我们重点介绍grid和place,这两种布局方式相较于pack更加...
- 手机Python编程神器——AidLearning
-
【下载和安装】1、让我们一起来看下吧,直接上图。第一眼看到是不是觉得很高逼格,暗黑画风,这很大佬。其实它就是------AidLearning。一个运行在安卓平台的linux系统,而且还包含了许多非常...
- Python GUI开发:从零开始创建桌面应用
-
在数字化时代,桌面应用依然是我们日常生活中不可或缺的一部分。无论是办公软件、游戏还是各种工具,它们都依赖于图形用户界面(GUI)来提供直观的操作体验。Python的wxPython库为我们提供了一个强...
- Python界面(GUI)编程PyQt5窗体小部件
-
一、简介在Qt(和大多数用户界面)中,“小部件”是用户可以与之交互的UI组件的名称。用户界面由布置在窗口内的多个小部件组成。Qt带有大量可用的小部件,也允许您创建自己的自定义和自定义小部件。二、小部件...
- 自学Python的8个正确顺序仅供参考
-
今天决定写一个Python新人的自学指南,好多人搞不清楚自学的顺序及路线,今天提供给大家参考一下,其实自学编程真的没有难。1【Python基础】安装并配置Python环境和编译软件Pycharm,这...
- Python | Python交互式编程神器_python交互运行
-
很多Pythoner不怎么喜欢用Python交互式界面编程,例如使用Jupyter工具。感觉交互式编程没有把代码敲完再debug舒服。但是在对一些模块/功能进行调试的时候还是非常香的。例如我在写爬虫程...
- Python GUI 编程入门教程 第14章:构建复杂图形界面
-
14.1界面布局管理在Tkinter中,界面控件的排列是通过布局管理器来实现的。Tkinter提供了三种布局管理器:pack、grid和place,每种布局管理器都有其独特的用途和优势。14.1.1...
- Python数据库编程教程:第 1 章 数据库基础与 Python 连接入门
-
1.1数据库的核心概念在开始Python数据库编程之前,我们需要先理解几个核心概念。数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它就像一个电子化的文件柜,能让我们高效...
- Python GUI 编程入门教程 第1章:Tkinter入门
-
1.1什么是Tkinter?Tkinter是Python的标准GUI库,它是Python语言的内置模块,无需额外安装。在Tkinter中,我们可以创建窗口、按钮、标签、文本框等常见的GUI元素。1....
- 用Python做个简单的登录页面_python怎么编写一个登录界面
-
我们上网时候,很多网站让你登录,没有账号注册会员,不能复制、粘贴都不让你操作。那我们怎么去实现这个窗口呢?很多语言都可以实现,根据你的需求去确定用哪个,这里我们学习python,就用tkinter测...
- Python入门学习教程:第 16 章 图形用户界面(GUI)编程
-
16.1什么是GUI编程?图形用户界面(GraphicalUserInterface,简称GUI)是指通过窗口、按钮、菜单、文本框等可视化元素与用户交互的界面。与命令行界面(CLI)相比,...
- 推荐系统实例_推荐系统有哪三个部分组成
-
协同过滤算法:#第14课:推荐系统实践-完整的协同过滤推荐系统示例#1.导入必要的库importpandasaspdfromsklearn.metrics.pairwise...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)