OpenCV(27)——轮廓拟合 opencv图像轮廓提取原理
itomcoil 2024-12-30 04:40 22 浏览
前言
在计算轮廓时,可能并不需要实际的轮廓,而仅需要一个接近于轮廓的近似多边形。比如矩形其实都是差不多的轮廓,都是长宽不相等且平行的四边形,那么只要提供一个近似的轮廓,我们就可以区分形状。
在OpenCV中,它给我们提供了cv2.boundingRect()函数来绘制轮廓的矩形边界,其完整定义如下:
def boundingRect(array):
array:前面已经介绍过,array是一个灰度图像,或者轮廓。
该函数返回3个值时,是矩形边界的左上角顶点的坐标值以及矩形边界的宽与高。返回4个值时,是矩形左上角顶点的x坐标,y坐标,以及宽高。
绘制椭圆的矩形边界
现在,我们还是使用前面的一张椭圆图形,如下图所示:
得到图形之后,我们使用上面的函数,计算该图像轮廓的4值,代码如下:
import cv2
img = cv2.imread("26_1.jpg")
# 转换为灰度图像
gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])
print(x, y, w, h)
运行之后,控制台输出如下内容:
这里我们得到了椭圆的矩形左上角坐标为(53,120),其宽高分别为272与84。
既然我们已经得到了其矩形边界的坐标以及宽高,那么我们可以开始绘制其矩形边界。前面提取轮廓绘制用的是cv2.drawContours()函数,这里同样也是。
代码如下:
import cv2
import numpy as np
img = cv2.imread("26_1.jpg")
cv2.imshow("img1",img)
# 转换为灰度图像
gray= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])
rect=np.array([[[x,y],[x+w,y],[x+w,y+h],[x,y+h]]])#1
cv2.drawContours(img,[rect],-1,(255,255,255),2)#1
cv2.imshow("img2",img)
cv2.waitKey()
cv2.destroyAllWindows()
运行之后,其椭圆的矩形边界就被我们标记出来了,效果如下:
当然,这里我们还可以使用另一个函数cv2.rectangle()来绘制矩形边界,只需要更换上面代码中注释1的两个代码,具体如下所示:
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255,255),2)
最小包围矩形框
在OpenCV中,它还提供了cv2.minAreaRect()来绘制最小包围矩形框,其完整定义如下:
def minAreaRect(points):
其中points参数是轮廓,返回值为矩形特征信息,包括矩形的中心(x,y),宽高,以及旋转角度。
特别注意,minAreaRect函数的返回值并不能直接代入drawContours()函数中。因此,我们必须将其转换为符合要求的结构才能接着操作。通过cv2.boxPoint()函数就可以转换为符合drawContours()的结构参数。
还是上面那张图,不过我们用旋转后的椭圆圆图,代码如下:
import cv2
import numpy as np
img = cv2.imread("26_4.jpg")
cv2.imshow("img1",img)
# 转换为灰度图像
gray= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
rect= cv2.minAreaRect(contours[0])
print(rect)
points=cv2.boxPoints(rect)
print(points)
points=np.int0(points)
print(points)
cv2.drawContours(img,[points],0,(255,255,255),2)
cv2.imshow("img2",img)
cv2.waitKey()
cv2.destroyAllWindows()
运行之后,图像效果以及控制台的输出信息如下:
这里我们可以清楚地看到minAreaRect()函数返回值的转换过程。先通过boxPoints()函数转换为drawContours()函数能接受的参数格式,然后通过取整转换为具体的像素坐标值。
最小包围圆形框
既然有最小包围矩形框,那么一定就有最小包围圆形框。在OpenCV中,它给我们提供cv2.minEnclosingCircle()函数来绘制最小包围圆形框。
函数的完整定义如下:
def minEnclosingCircle(points):
这里的参数与上面的points参数一致,但是其返回值并不相同,毕竟绘制圆形肯定与绘制矩形的参数肯定不一样。
它有两个返回值,一个是圆形的中心坐标(x,y),一个是圆形的半径r。下面,我们直接来绘制上面椭圆的最小包围圆形框。具体代码如下所示:
import cv2
import numpy as np
img = cv2.imread("26_4.jpg")
cv2.imshow("img1", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
(x, y), r = cv2.minEnclosingCircle(contours[0])
center = (int(x), int(y))
r = int(r)
cv2.circle(img, center, r, (255, 255, 255), 2)
cv2.imshow("img2", img)
cv2.waitKey()
cv2.destroyAllWindows()
运行之后,效果如下所示:
最优拟合椭圆
在OpenCV中,它给我们提供了cv2.fitEllipse()函数绘制最优拟合椭圆。其完整的定义如下:
def fitEllipse(points):
其中points参数与前文一致,而它的返回值是RotatedRect类型,这是因为该函数返回的是拟合椭圆的外接矩形,包括矩形的质心,宽高,旋转角度等信息,这些信息正好与椭圆的中心点,轴长度,旋转角度一致。
下面,我们来使用该函数绘制最优拟合椭圆,这里我们选取如上图所示的一张矩形图。具体代码如下:
import cv2
img = cv2.imread("27.jpg")
cv2.imshow("img1", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
ellipse = cv2.fitEllipse(contours[0])
cv2.ellipse(img, ellipse, (0, 0, 255), 3)
cv2.imshow("img2", img)
cv2.waitKey()
cv2.destroyAllWindows()
运行之后,效果如下所示:
最优拟合直线
在OpenCV中,它还提供了cv2.fitLine()函数绘制最优拟合直线,其完整定义如下:
def fitLine(points, distType, param, reps, aeps, line=None):
points:与前文一样,是轮廓
distType:距离类型。拟合直线时,要使输入点到拟合直线的距离之和最小。详细参数定义参考开发文档,这里不再赘述。
param:距离参数,与所选距离类型有关。当该参数为0时,自动选择最优值。
reps:用于表示拟合直线所需要的径向精度,通常该值被设定为0.01
aeps:用于表示拟合直线所需要的角度精度,通常该值被设定为0.01
对于二维直线,返回值line为4维,前两维代表拟合出的直线的方向,后两位代表直线上的一点。
下面,我们来直接使用代码绘制最优拟合直线。
import cv2
img = cv2.imread("27.jpg")
cv2.imshow("img1", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
rows, cols = img.shape[:2]
[vx, vy, x, y] = cv2.fitLine(contours[0], cv2.DIST_L2, 0, 0.01, 0.01)
lefty = int((-x * vy / vx) + y)
righty = int(((cols - x) * vy / vx) + y)
cv2.line(img, (cols - 1, righty),(0, lefty), (0, 0, 255), 3)
cv2.imshow("img2", img)
cv2.waitKey()
cv2.destroyAllWindows()
运行之后,效果如下所示:
对于绘制直线来说,我们需要获取绘制直线的起点以及终点,这里lefty为起点,righty为终点。
最小外包三角形
在OpenCV,它还提供了cv2.minEnclosingTriangle()函数来绘制最小外包三角形。其完整定义如下:
def minEnclosingTriangle(points, triangle=None):
其中points与前文类似,其返回值triangle为外包三角形的三个顶点集。
下面,我们直接构建最小外包三角形,具体代码如下:
import cv2
img = cv2.imread("27.jpg")
cv2.imshow("img1", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
area, trg1 = cv2.minEnclosingTriangle(contours[0])
print(area)
print(trg1)
for i in range(0, 3):
cv2.line(img, tuple(trg1[i][0]), tuple(trg1[(i + 1) % 3][0]), (0, 255, 0), 2)
cv2.imshow("img2", img)
cv2.waitKey()
cv2.destroyAllWindows()
运行之后,效果如下:
需要注意的是,在cv2中没有直接绘制三角形的函数,所以我们通过绘制三条直线,绘制三角形,minEnclosingTriangle()函数第一个返回值为三角形面积,第二返回值是三点坐标。
逼近多边形
在OpenCV中,它还提供了cv2.approxPolyDP()函数构建指定边数的逼近多边形。其完整定义如下:
def approxPolyDP(curve, epsilon, closed, approxCurve=None):
curve:轮廓
epsilon:精度,原始轮廓的边界点与逼近多边形边界之间的最大距离
closed:布尔类型。为True时,表示逼近多边形是封闭的。为False时,biao表示毕竟多边形是不封闭的。
approxCurve为该函数的返回值,是逼近多边形的点集。。
下面,我们来实现各类逼近多边形的绘制,代码如下:
import cv2
img = cv2.imread("24.jpg")
list=[0.1,0.09,0.055,0.05,0.02]
cv2.imshow("img", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for i, val in enumerate(list):
epsilon = val * cv2.arcLength(contours[0], True)
approx = cv2.approxPolyDP(contours[0], epsilon, True)
cv2.drawContours(img, [approx], 0, (0, 255, 0), 2)
cv2.imshow("img"+str(i), img)
cv2.waitKey()
cv2.destroyAllWindows()
运行之后,效果如下:
cv2.approxPolyDP()函数采用的是Douglas-Peucker算法,该算法的原理是首先从轮廓中找到距离最远的两个点,并将两个点相连。接下来,在轮廓上找到一个离当前直线最远的点,并将该点与原有直线连成一个封闭的多边形,此时得到一个三角形。以此类推四边形,五边形,六边形等。当前多边形的距离都小于函数cv2.approxPolyDP()的参数epsilon的值时,就停止迭代。
相关推荐
- 字节三面:MySQL数据同步ES的4种方法!你能想到几种?
-
如何进行数据同步MySQL是一种流行的关系型数据库,而Elasticsearch是一个强大的搜索引擎和分析平台。将MySQL数据同步到Elasticsearch中可以帮助我们更方便地搜索和分析数据。在...
- Java 连接 MySQL 数据库(java连接mysql课设)
-
一、环境准备1.1依赖管理(Maven)在项目的pom.xml中添加MySQL驱动依赖:<dependency><groupId>mysql</gro...
- Spring Boot 连接 MySQL 数据库(spring boot配置数据库连接)
-
一、环境准备1.1依赖管理(Maven)<!--方案1:JdbcTemplate--><dependency><groupId>org.sprin...
- java连接mysql数据库达成数据查询详细教程
-
前言:本篇文章适用于所有前后端开发者众所周知,只要是编程,那肯定是需要存储数据的,无论是c语言还是java,都离不开数据的读写,数据之间传输不止,这也就形成了现代互联网的一种相互存在关系!而读写存储的...
- 既然有MySQL了,为什么还要有MongoDB?
-
大家好,我是哪吒,最近项目在使用MongoDB作为图片和文档的存储数据库,为啥不直接存MySQL里,还要搭个MongoDB集群,麻不麻烦?让我们一起,一探究竟,了解一下MongoDB的特点和基本用法,...
- 用 JSP 连接 MySQL 登入注册项目实践(JSP + HTML + CSS + MySQL)
-
目录一、写在前面二、效果图三、实现思路四、实现代码1、login总界面2、registercheck总代码3、logoutcheck总代码4、amendcheck总代码相关文章一、写在前面哈喽~大家好...
- MySQL关联查询时,为什么建议小表驱动大表?这样做有什么好处
-
在SQL数据库中,小表驱动大表是一种常见的优化策略。这种策略在涉及多表关联查询的情况下尤其有效。这是因为数据库查询引擎会尽可能少的读取和处理数据,这样能极大地提高查询性能。"小表驱动大表&...
- mysql8驱动兼容规则(mysql8.0驱动)
-
JDBC版本:Connector/J8.0支持JDBC4.2规范.如果Connector/J8.0依赖于更高版本的jdbclib,对于调用只有更高版本特定的方法会抛出SQLFea...
- mysql数据表如何导入MSSQL中(mysql怎样导入数据)
-
本案例演示所用系统是windowsserver2012.其它版本windows操作系统类似。1,首先需要下载mysqlodbc安装包。http://dev.mysql.com/downloa...
- MySQL 驱动中虚引用 GC 耗时优化与源码分析
-
本文要点:一种优雅解决MySQL驱动中虚引用导致GC耗时较长问题的解决方法虚引用的作用与使用场景MySQL驱动源码中的虚引用分析背景在之前文章中写过MySQLJDBC驱动中的虚引用导致...
- ExcelVBA 连接 MySQL 数据库(vba 连接sqlserver)
-
上期分享了ExcelVBA连接sqlite3数据库,今天给大家分享ExcelVBA连接另一个非常流行的MySQL数据库。一、环境win10Microsoftoffice2010(...
- QT 5.12.11 编译MySQL 8 驱动教程- 1.01版
-
安装编译环境:qt5.12.11mysql8.0.28修改mysql.pro工程文件,编译生成动态库mysql.pro文件位置:D:\Alantop_Dir\alantop_sde\Qt\Qt5....
- 「Qt入门第22篇」 数据库(二)编译MySQL数据库驱动
-
导语在上一节的末尾我们已经看到,现在可用的数据库驱动只有两类3种,那么怎样使用其他的数据库呢?在Qt中,我们需要自己编译其他数据库驱动的源码,然后当做插件来使用。下面就以现在比较流行的MySQL数据库...
- (干货)一级注册计量师第五版——第四章第三节(三)
-
计量标准的建立、考核及使用(三)PS:内容都是经过个人学习而做的笔记。如有错误的地方,恳请帮忙指正!计量标准考核中有关技术问题1检定或校准结果的重复性重复性是指在一组重复性测量条件下的测量精密度。检定...
- 声学测量基础知识分享(声学测量pdf)
-
一、声学测量的分类和难点1.声学测量的分类声学测量按目的可分为:声学特性研究(声学特性研究、媒质特性研究、声波发射与接收的研究、测量方法与手段的研究、声学设备的研究),声学性能评价和改善(声学特性评价...
- 一周热门
- 最近发表
-
- 字节三面:MySQL数据同步ES的4种方法!你能想到几种?
- Java 连接 MySQL 数据库(java连接mysql课设)
- Spring Boot 连接 MySQL 数据库(spring boot配置数据库连接)
- java连接mysql数据库达成数据查询详细教程
- 既然有MySQL了,为什么还要有MongoDB?
- 用 JSP 连接 MySQL 登入注册项目实践(JSP + HTML + CSS + MySQL)
- MySQL关联查询时,为什么建议小表驱动大表?这样做有什么好处
- mysql8驱动兼容规则(mysql8.0驱动)
- mysql数据表如何导入MSSQL中(mysql怎样导入数据)
- MySQL 驱动中虚引用 GC 耗时优化与源码分析
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)