百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Pandas宝藏函数-concat()

itomcoil 2025-01-04 20:22 42 浏览

作者:小伍哥

来源:AI入门学习

在数据处理过程中,经常会遇到多个表进行拼接合并的需求,在Pandas中有多个拼接合并的方法,每种方法都有自己擅长的拼接方式,本文对pd.concat()进行详细讲解,希望对你有帮助。pd.concat()函数可以沿着指定的轴将多个dataframe或者series拼接到一起,这一点和另一个常用的pd.merge()函数不同,pd.merge()解决数据库样式的左右拼接,不能解决上下拼接。

一、基本语法

pd.concat(

     objs,      

     axis=0,     

     join='outer',

     ignore_index=False,

     keys=None,      

     levels=None,     

     names=None,      

     verify_integrity=False,     

     copy=True)

二、参数含义

  • objs:Series,DataFrame或Panel对象的序列或映射,如果传递了dict,则排序的键将用作键参数
  • axis:{0,1,...},默认为0,也就是纵向上进行合并。沿着连接的轴。
  • join:{'inner','outer'},默认为“outer”。如何处理其他轴上的索引。outer为联合和inner为交集。
  • ignore_index:boolean,default False。如果为True,请不要使用并置轴上的索引值。结果轴将被标记为0,...,n-1。如果要连接其中并置轴没有有意义的索引信息的对象,这将非常有用。注意,其他轴上的索引值在连接中仍然受到尊重。
  • keys:序列,默认值无。使用传递的键作为最外层构建层次索引。如果为多索引,应该使用元组。
  • levels:序列列表,默认值无。用于构建MultiIndex的特定级别(唯一值)。否则,它们将从键推断。
  • names:list,default无。结果层次索引中的级别的名称。
  • verify_integrity:boolean,default False。检查新连接的轴是否包含重复项。这相对于实际的数据串联可能是非常昂贵的。
  • copy:boolean,default True。如果为False,请勿不必要地复制数据。

三、竖向堆叠

#构建需要的数据表
import pandas as pd
df1 = pd.DataFrame({'A':['A{}'.format(i) for i in range(0,4)],
                    'B':['B{}'.format(i) for i in range(0,4)],
                    'C':['C{}'.format(i) for i in range(0,4)]
                 })


df2 = pd.DataFrame({'A':['A{}'.format(i) for i in range(4,8)],
                    'B':['B{}'.format(i) for i in range(4,8)],
                    'C':['C{}'.format(i) for i in range(4,8)]
                 })
df3 = pd.DataFrame({'A':['A{}'.format(i) for i in range(8,12)],
                    'B':['B{}'.format(i) for i in range(8,12)],
                    'C':['C{}'.format(i) for i in range(8,12)]
                 })
现将表构成list,然后在作为concat的输入
frames = [df1, df2, df3]

result = pd.concat(frames)

 A    B    C

0   A0   B0   C0

1   A1   B1   C1

2   A2   B2   C2

3   A3   B3   C3

0   A4   B4   C4

1   A5   B5   C5

2   A6   B6   C6

3   A7   B7   C7

0   A8   B8   C8

1   A9   B9   C9

2  A10  B10  C10

3  A11  B11  C11

传入也可以是字典

frames = {'df1':df1, 'df2':df2,'df3':df3}

result = pd.concat(frames)

   A    B    C

df1 0   A0   B0   C0

    1   A1   B1   C1

    2   A2   B2   C2

    3   A3   B3   C3

df2 0   A4   B4   C4

    1   A5   B5   C5

    2   A6   B6   C6

    3   A7   B7   C7

df3 0   A8   B8   C8

    1   A9   B9   C9

    2  A10  B10  C10

    3  A11  B11  C11
三、横向拼接

1、axis

当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并

#再构建一个表

df4 = pd.DataFrame({'C':['C{}'.format(i) for i in range(3,9)],

                    'E':['E{}'.format(i) for i in range(3,9)],

                    'F':['F{}'.format(i) for i in range(3,9)]

                 })

pd.concat([df1,df4], axis=1)

     A    B    C   C   E   F

0   A0   B0   C0  C3  E3  F3

1   A1   B1   C1  C4  E4  F4

2   A2   B2   C2  C5  E5  F5

3   A3   B3   C3  C6  E6  F6

4  NaN  NaN  NaN  C7  E7  F7

5  NaN  NaN  NaN  C8  E8  F8

2、join

加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。

#  join='inner' 取交集

pd.concat([df1, df4], axis=1, join='inner')

    A   B   C   C   E   F

0  A0  B0  C0  C3  E3  F3

1  A1  B1  C1  C4  E4  F4

2  A2  B2  C2  C5  E5  F5

3  A3  B3  C3  C6  E6  F6




# join='outer' 和 默认值相同

pd.concat([df1, df4], axis=1, join='outer')

     A    B    C   C   E   F

0   A0   B0   C0  C3  E3  F3

1   A1   B1   C1  C4  E4  F4

2   A2   B2   C2  C5  E5  F5

3   A3   B3   C3  C6  E6  F6

4  NaN  NaN  NaN  C7  E7  F7

5  NaN  NaN  NaN  C8  E8  F8
四、对比append方法

append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)

df1.append(df2)

    A   B   C

0  A0  B0  C0

1  A1  B1  C1

2  A2  B2  C2

3  A3  B3  C3

0  A4  B4  C4

1  A5  B5  C5

2  A6  B6  C6

3  A7  B7  C7
五、忽略index

如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。

pd.concat([df1, df4], axis=1, ignore_index=True) 

    0    1    2   3   4   5

0   A0   B0   C0  C3  E3  F3

1   A1   B1   C1  C4  E4  F4

2   A2   B2   C2  C5  E5  F5

3   A3   B3   C3  C6  E6  F6

4  NaN  NaN  NaN  C7  E7  F7

5  NaN  NaN  NaN  C8  E8  F8
六、增加区分组键

前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源

1、可以直接用key参数实现

pd.concat([df1,df2,df3], keys=['x', 'y', 'z'])

 A    B    C

x 0   A0   B0   C0

  1   A1   B1   C1

  2   A2   B2   C2

  3   A3   B3   C3

y 0   A4   B4   C4

  1   A5   B5   C5

  2   A6   B6   C6

  3   A7   B7   C7

z 0   A8   B8   C8

  1   A9   B9   C9

  2  A10  B10  C10

  3  A11  B11  C11

2、传入字典来增加分组键

frames = {'df1':df1, 'df2':df2,'df3':df3}
result = pd.concat(frames)
   A    B    C
df1 0   A0   B0   C0
    1   A1   B1   C1
    2   A2   B2   C2
    3   A3   B3   C3
df2 0   A4   B4   C4
    1   A5   B5   C5
    2   A6   B6   C6
    3   A7   B7   C7
df3 0   A8   B8   C8
    1   A9   B9   C9
    2  A10  B10  C10
    3  A11  B11  C11

七、加入新的行

1、列字段相同的加入

append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。

s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])

df1.append(s2, ignore_index=True)

  A   B   C    D

0  A0  B0  C0  NaN

1  A1  B1  C1  NaN

2  A2  B2  C2  NaN

3  A3  B3  C3  NaN

4  X0  X1  X2   X3

2、列字段不同的加入

如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。

dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4},

         {'A': 5, 'B': 6, 'C': 7, 'Y': 8}]

df1.append(dicts, ignore_index=True)

 A   B   C    X    Y

0  A0  B0  C0  NaN  NaN

1  A1  B1  C1  NaN  NaN

2  A2  B2  C2  NaN  NaN

3  A3  B3  C3  NaN  NaN

4   1   2   3  4.0  NaN

5   5   6   7  NaN  8.0


相关推荐

MySQL修改密码_mysql怎么改密码忘了怎么办

拥有原来的用户名账户的密码mysqladmin-uroot-ppassword"test123"Enterpassword:【输入原来的密码】忘记原来root密码第一...

数据库密码配置项都不加密?心也太大了吧!

先看一份典型的配置文件...省略...##配置MySQL数据库连接spring.datasource.driver-class-name=com.mysql.jdbc.Driverspr...

Linux基础知识_linux基础入门知识

系统目录结构/bin:命令和应用程序。/boot:这里存放的是启动Linux时使用的一些核心文件,包括一些连接文件以及镜像文件。/dev:dev是Device(设备)的缩写,该目录...

MySQL密码重置_mysql密码重置教程

之前由于修改MySQL加密模式为mysql_native_password时操作失误,导致无法登陆MySQL数据库,后来摸索了一下,对MySQL数据库密码进行重置后顺利解决,步骤如下:1.先停止MyS...

Mysql8忘记密码/重置密码_mysql密码忘了怎么办?

Mysql8忘记密码/重置密码UBUNTU下Mysql8忘记密码/重置密码步骤如下:先说下大概步骤:修改配置文件,使得用空密码可以进入mysql。然后置当前root用户为空密码。再次修改配置文件,不能...

MySQL忘记密码怎么办?Windows环境下MySQL密码重置图文教程

有不少小白在使用Windows进行搭建主机的时候,安装了一些环境后,其中有MySQL设置后,然后不少马大哈忘记了MySQL的密码,导致在一些程序安装及配置的时候无法进行。这个时候怎么办呢?重置密码呗?...

10种常见的MySQL错误,你可中招?_mysql常见错误提示及解决方法

【51CTO.com快译】如果未能对MySQL8进行恰当的配置,您非但可能遇到无法顺利访问、或调用MySQL的窘境,而且还可能给真实的应用生产环境带来巨大的影响。本文列举了十种MySQL...

Mysql解压版安装过程_mysql解压版安装步骤

Mysql是目前软件开发中使用最多的关系型数据库,具体安装步骤如下:第一步:Mysql官网下载最新版(mysql解压版(mysql-5.7.17-winx64)),Mysql官方下载地址为:https...

MySQL Root密码重置指南:Windows新手友好教程

如果你忘记了MySQLroot密码,请按照以下简单步骤进行重置。你需要准备的工具:已安装的MySQL以管理员身份访问命令提示符一点复制粘贴的能力分步操作指南1.创建密码重置文件以管理员...

安卓手机基于python3搜索引擎_python调用安卓so库

环境:安卓手机手机品牌:vivox9s4G运行内存手机软件:utermux环境安装:1.java环境的安装2.redis环境的安装aptinstallredis3.elasticsearch环...

Python 包管理 3 - poetry_python community包

Poetry是一款现代化的Python依赖管理和打包工具。它通过一个pyproject.toml文件来统一管理你的项目依赖、配置和元数据,并用一个poetry.lock文件来锁定所有依赖的精...

Python web在线服务生产环境真实部署方案,可直接用

各位志同道合的朋友大家好,我是一个一直在一线互联网踩坑十余年的编码爱好者,现在将我们的各种经验以及架构实战分享出来,如果大家喜欢,就关注我,一起将技术学深学透,我会每一篇分享结束都会预告下一专题最近经...

官方玩梗:Python 3.14(πthon)稳定版发布,正式支持自由线程

IT之家10月7日消息,当地时间10月7日,Python软件基金会宣布Python3.14.0正式发布,也就是用户期待已久的圆周率(约3.14)版本,再加上谐音梗可戏称为π...

第一篇:如何使用 uv 创建 Python 虚拟环境

想象一下,你有一个使用Python3.10的后端应用程序,系统全局安装了a2.1、b2.2和c2.3这些包。一切运行正常,直到你开始一个新项目,它也使用Python3.10,但需要...

我用 Python 写了个自动整理下载目录的工具

经常用电脑的一定会遇到这种情况:每天我们都在从浏览器、微信、钉钉里下各种文件,什么截图、合同、安装包、临时文档,全都堆在下载文件夹里。起初还想着“过两天再整理”,结果一放就是好几年。结果某天想找一个发...