自回归滞后模型进行多变量时间序列预测
itomcoil 2025-01-04 20:23 20 浏览
下图显示了关于不同类型葡萄酒销量的月度多元时间序列。 每种葡萄酒类型都是时间序列中的一个变量。
假设要预测其中一个变量。 比如,sparkling wine。 如何建立一个模型来进行预测呢?
一种常见的方法是将该变量其视为单变量时间序列。 这样就有很多方法可以用来模拟这些系列。 比如 ARIMA、指数平滑或 Facebook 的 Prophet,还有自回归的机器学习方法也可以使用。
但是其他变量可能包含sparkling wine未来销售的重要线索。 看看下面的相关矩阵。
可以看到sparkling wine的销量(第二排)与其他葡萄酒的销量有相当的相关性。所以在模型中包含这些变量可能是一个好主意。
本文将介绍可以通过一种称为自回归分布滞后(ARDL)的方法来做到这一点。
Auto-Regressive Distributed Lag
ARDL模型采用自回归。自回归是大多数单变量时间序列模型的基础。它主要分为两个步骤。
首先将(单变量)时间序列从一个值序列转换为一个矩阵。可以用用延时嵌入法(time delay embedding)来做到这一点。尽管名字很花哨,但这种方法非常简单。它基于之前的最近值对每个值进行建模。然后建立一个回归模型。未来值表示目标变量。解释变量是过去最近的值。
多元时间序列的思路与此类似,我们可以将其他变量的过去值添加到解释变量中。这就是了被称为自回归分布式滞后方法。分布式滞后的意思指的是使用额外变量的滞后。
现在我们把他们进行整合,时间序列中一个变量的未来值取决于它自身的滞后值以及其他变量的滞后值。
代码实现
多变量时间序列通常是指许多相关产品的销售数据。我们这里以葡萄酒销售时间序列为例。当然ARDL方法也适用于零售以外的其他领域。
转换时间序列
首先使用下面的脚本转换时间序列。
import pandas as pd
# https://github.com/vcerqueira/blog/
from src.tde import time_delay_embedding
wine = pd.read_csv('data/wine_sales.csv', parse_dates=['date'])
# setting date as index
wine.set_index('date', inplace=True)
# you can simulate some data with the following code
# wine = pd.DataFrame(np.random.random((100, 6)),
# columns=['Fortified','Drywhite','Sweetwhite',
# 'Red','Rose','Sparkling'])
# create data set with lagged features using time delay embedding
wine_ds = []
for col in wine:
col_df = time_delay_embedding(wine[col], n_lags=12, horizon=6)
wine_ds.append(col_df)
# concatenating all variables
wine_df = pd.concat(wine_ds, axis=1).dropna()
# defining target (Y) and explanatory variables (X)
predictor_variables = wine_df.columns.str.contains('\(t\-')
target_variables = wine_df.columns.str.contains('Sparkling\(t\+')
X = wine_df.iloc[:, predictor_variables]
Y = wine_df.iloc[:, target_variables]
将 time_delay_embedding 函数应用于时间序列中的每个变量(第 18-22 行)。第 23 行将结果与我们的数据集进行合并。
解释变量 (X) 是每个变量在每个时间步长的最后 12 个已知值(第 29 行)。 以下是它们如何查找滞后 t-1(为简洁起见省略了其他滞后值):
目标变量在第30行中定义。这指的是未来销售的6个值:
建立模型
准备好数据之后,就可以构建模型了。使用随机森林进行一个简单的训练和测试循环。
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error as mae
from sklearn.ensemble import RandomForestRegressor
# train/test split
X_tr, X_ts, Y_tr, Y_ts = train_test_split(X, Y, test_size=0.3, shuffle=False)
# fitting a RF model
model = RandomForestRegressor()
model.fit(X_tr, Y_tr)
# getting forecasts for the test set
preds = model.predict(X_ts)
# computing MAE error
print(mae(Y_ts, preds))
# 288.13
拟合模型之后(第11行),得到了测试集中的预测(第14行)。该模型的平均绝对误差为288.13。
滞后参数的选择
上面的基线使用每个变量的 12 个滞后作为解释变量。 这是在函数 time_delay_embedding 的参数 n_lags 中定义的。那么应该如何设置这个参数的值呢?
很难先验地说应该包括多少值,因为 这取决于输入数据和特定变量。
解决这个问题的一种简单方法是使用特征选择。 从相当数量的值开始,然后根据重要性评分或预测性能来修改这个数字,或者直接使用GridSearch进行超参数的搜索。
我们这里将简单的演示一个判断的过程: 根据随机森林的重要性得分选择前 10 个特征。
# getting importance scores from previous model
importance_scores = pd.Series(dict(zip(X_tr.columns, model.feature_importances_)))
# getting top 10 features
top_10_features = importance_scores.sort_values(ascending=False)[:10]
top_10_features_nm = top_10_features.index
X_tr_top = X_tr[top_10_features_nm]
X_ts_top = X_ts[top_10_features_nm]
# re-fitting the model
model_top_features = RandomForestRegressor()
model_top_features.fit(X_tr_top, Y_tr)
# getting forecasts for the test set
preds_topf = model_top_features.predict(X_ts_top)
# computing MAE error
print(mae(Y_ts, preds_topf))
# 274.36
前10个特征比原始预测显示出更好的预测性能。以下是这些功能的重要性:
目标变量(Sparkling)的滞后是最重要的。但是其他变量的一些滞后也是相关的。
ARDL 的扩展
多个目标变量预测,目前为止,我们都在预测单个变量(sparkling wine)。 如果我们想要同时预测几个变量呢?
这种方法被称为:向量自回归 (VAR)
就像在 ARDL 中一样,每个变量都是根据其滞后和其他变量的滞后建模的。 当想要预测多个变量而不仅仅是一个变量时,将使用 VAR。
与全局预测模型的关系
值得注意的是,ARDL并不等同于全局预测模型(Global Forecasting Models)。
在ARDL的前提下,每个变量的信息被添加到解释变量中。变量的数量通常很少,且大小相同。
全局预测模型汇集了许多时间序列的历史观测结果。模型通过这些所有观察结果进行建模。每一个新的时间序列都是作为新的观察结果加入到数据中。全局预测模型通常涉及多达数千个时间序列量级也很大。
总结
本文的主要内容如下:多变量时间序列包含两个或多个变量;ARDL 方法可用于多变量时间序列的监督学习;使用特征选择策略优化滞后数。如果要预测多个变量,可以使用 VAR 方法。
作者:Vitor Cerqueira
相关推荐
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
-
在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...
- Connect 2.0来了,还有Nuke和Maya新集成
-
ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
-
什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...
- Python入坑系列:桌面GUI开发之Pyside6
-
阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
-
通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...
- pyside2的基础界面(pyside2显示图片)
-
今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...
- Python GUI开发:打包PySide2应用(python 打包pyc)
-
之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
-
PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
-
之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
-
Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...
- Python操作系统资源管理与监控(python调用资源管理器)
-
在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...
- 本地部署开源版Manus+DeepSeek创建自己的AI智能体
-
1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...
- 一文教会你,搭建AI模型训练与微调环境,包学会的!
-
一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...
- 使用scikit-learn为PyTorch 模型进行超参数网格搜索
-
scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...
- 如何Keras自动编码器给极端罕见事件分类
-
全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...
- 一周热门
- 最近发表
-
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
- Connect 2.0来了,还有Nuke和Maya新集成
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
- Python入坑系列:桌面GUI开发之Pyside6
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
- pyside2的基础界面(pyside2显示图片)
- Python GUI开发:打包PySide2应用(python 打包pyc)
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)