非常牛批的可视化库Plotly
itomcoil 2025-01-04 20:24 83 浏览
1.plotly库的相关介绍
1)相关说明
- plotly是一个基于javascript的绘图库,plotly绘图种类丰富,效果美观;
- 易于保存与分享plotly的绘图结果,并且可以与Web无缝集成;
- ploty默认的绘图结果,是一个HTML网页文件,通过浏览器可以直接查看;
2)plotly与matplotlib、seaborn的关系
需要注意的是,ployly绘图库与matplotlib绘图库、seaborn绘图库并没有什么关系。也就是说说plotly是一个单独的绘图库,有自己独特的绘图语法、绘图参数和绘图原理,因此我们需要单独学习它。
2.导入相关库
对于我们做数据分析的人员来说,一般用的都是离线绘图库。在线绘图库需要的话,可以自己百度研究。
import os
import numpy as np
import pandas as pd
import plotly as py
import plotly.graph_objs as go
import plotly.expression as px
from plotly import tools
import warnings
warnings.filterwarnings("ignore")
3.plotly绘图原理
1)ployly常用的两个绘图模块:graph_objs和expression
graph_objs和expression是plotly里面两个很常用的绘图库,graph_objs相当于matplotlib,在数据组织上比较费劲,但是仍然比起matplotlib绘图更简单、更好看。这里说的费劲是相对于expression库来说的。expression库相当于seaborn的地位,在数据组织上较为容易,绘图比起seaborn来说,也更加容易。这里你心里有个印象即可,知道这两个绘图库很牛,就行了。
对于graph_objs绘图库,我们常命名为go(import plotly.graph_objs as go);对于expression绘图库,我们常命名为px(import plotly.expression as px)。
2)graph_objs("go")库的绘图原理
① 简单的案例说明
df = pd.read_excel("plot.xlsx")
# 步骤一
trace0 = go.Scatter(x=df["年份"],y=df["城镇居民"],name="城镇居民")
trace1 = go.Scatter(x=df["年份"],y=df["农村居民"],name="农村居民")
# 步骤二
data = [trace0,trace1]
# 步骤三
fig = go.Figure(data)
# 步骤四
fig.update_layout(
title="城乡居民家庭人均收入",
xaxis_title="年份",
yaxis_title="人均收入(元)"
)
# 步骤五
fig.show()
结果如下:
② 原理说明
- 1、绘制图形轨迹,在ployly里面叫做trace,每一个轨迹是一个trace。
- 2、将轨迹包裹成一个列表,形成一个轨迹列表。一个轨迹放在一个列表中,多个轨迹也是放在一个列表中。
- 3、创建画布的同时,并将上述的轨迹列表,传入到Figure()中。
- 4、使用Layout添加其他的绘图参数,完善图形。
- 5、展示图形。
3)expression("px")库的绘图原理
① 简单的案例说明
iris = pd.read_excel("iris.xlsx",sheet_name="Sheet2")
fig = px.scatter(iris,x="花萼长度",y="花萼宽度",color="属种")
fig.show()
结果如下:
② 原理说明
- 1、直接使用px调用某个绘图方法时,会自动创建画布,并画出图形。
- 2、展示图形。??
4.保存图形的两种方式
1)直接下载下来:保存成png静态图片
2)使用py.offline.plot(fig,filename="XXX.html")代码保存成html网页动态图片。
iris = pd.read_excel("iris.xlsx",sheet_name="Sheet2")
fig = px.scatter(iris,x="花萼长度",y="花萼宽度",color="属种")
py.offline.plot(fig,filename="iris1.html")
结果如下:该文件是一个html文件,这里上传不了,自己下去尝试一下就知道了。
3)总结说明
使用“照相机”那个下载按钮,可以直接将图片下载保存在本地,但是这个图片是一个静态图片,没有交互性。但是使用py.offline.plot()方法,可以将图片保存成一个html的网页格式,其他人可以在电脑上直接打开这个html网页,并且保留了图片的原始样式,具有交互性。??
5.绘制双y轴图
1)数据集如下
2)绘制不同地区的“任务完成量”和“任务完成率”情况
df = pd.read_excel("double_y.xlsx")
x = df["地区"]
y1 = df["完成量"]
y2 = df["完成率"]
trace0 = go.Bar(x=x,y=y1,
marker=dict(color=["red","blue","green","darkgrey","darkblue","orange"]),
opacity=0.5,
name="不同地区的任务完成量")
trace1 = go.Scatter(x=x,y=y2,
mode="lines",
name="不同地区的任务完成率",
# 【步骤一】:使用这个参数yaxis="y2",就是绘制双y轴图
yaxis="y2")
data = [trace0,trace1]
layout = go.Layout(title="不同地区的任务完成量和任务完成率情况",
xaxis=dict(title="地区"),
yaxis=dict(title="不同地区的任务完成量"),
# 【步骤二】:给第二个y轴,添加标题,指定第二个y轴,在右侧。
yaxis2=dict(title="不同地区的任务完成率",overlaying="y",side="right"),
legend=dict(x=0.78,y=0.98,font=dict(size=12,color="black")))
fig = go.Figure(data=data,layout=layout)
fig.show()
结果如下:
6.绘制多子图
1)相关库和方法介绍
- 1、绘制多个子图,需要先导入tools库。from plotly import tools
- 2、tools.make_subplots(rows= ,cols=)用于指定绘图布局,rows和cols表示将画布布局成几行几列。
- 3、fig.append_trace()将每个图形轨迹trace,绘制在不同的位置上。
2)分别绘制不同地区的“任务完成量”和“任务完成率”情况
# 步骤一:导入相关库
from plotly import tools
# 步骤二:指定绘图布局
fig = tools.make_subplots(rows=2,cols=1)
# 步骤三:绘制图形轨迹
trace0 = go.Bar(x=x,y=y1,
marker=dict(color=["red","blue","green","darkgrey","darkblue","orange"]),
opacity=0.5,
name="不同地区的任务完成量")
trace1 = go.Scatter(x=x,y=y2,
mode="lines",
name="不同地区的任务完成率",
line=dict(width=2,color="red"))
# 步骤四:将第一个轨迹,添加到第1行的第1个位置
# 将第二个轨迹,添加到第2行的第1个位置
fig.append_trace(trace0,1,1)
fig.append_trace(trace1,2,1)
# 步骤四:根据自己的需求,给图形添加标题。height、width参数用于指定图形的宽和高
fig.update_layout(title="不同地区的任务量与完成量",height=800,width=800)
# 步骤五:展示图形
fig.show()
结果如下:
- 上一篇:Python中的爬虫机制?
- 下一篇:图像分割掩码标注转YOLO多边形标注
相关推荐
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
-
在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...
- Connect 2.0来了,还有Nuke和Maya新集成
-
ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
-
什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...
- Python入坑系列:桌面GUI开发之Pyside6
-
阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
-
通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...
- pyside2的基础界面(pyside2显示图片)
-
今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...
- Python GUI开发:打包PySide2应用(python 打包pyc)
-
之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
-
PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
-
之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
-
Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...
- Python操作系统资源管理与监控(python调用资源管理器)
-
在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...
- 本地部署开源版Manus+DeepSeek创建自己的AI智能体
-
1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...
- 一文教会你,搭建AI模型训练与微调环境,包学会的!
-
一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...
- 使用scikit-learn为PyTorch 模型进行超参数网格搜索
-
scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...
- 如何Keras自动编码器给极端罕见事件分类
-
全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...
- 一周热门
- 最近发表
-
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
- Connect 2.0来了,还有Nuke和Maya新集成
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
- Python入坑系列:桌面GUI开发之Pyside6
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
- pyside2的基础界面(pyside2显示图片)
- Python GUI开发:打包PySide2应用(python 打包pyc)
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)