百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

zigzag源代码——包括python和mql语言

itomcoil 2025-01-04 20:24 50 浏览


"""
reference:
https://github.com/jbn/ZigZag.git
"""
import numpy as np

PEAK = 1
VALLEY = -1


def identify_initial_pivot(X, up_thresh, down_thresh):
    x_0 = X[0]
    x_t = x_0

    max_x = x_0
    min_x = x_0

    max_t = 0
    min_t = 0

    up_thresh += 1
    down_thresh += 1

    for t in range(1, len(X)):
        x_t = X[t]

        if x_t / min_x >= up_thresh:
            return VALLEY if min_t == 0 else PEAK

        if x_t / max_x <= down_thresh:
            return PEAK if max_t == 0 else VALLEY

        if x_t > max_x:
            max_x = x_t
            max_t = t

        if x_t < min_x:
            min_x = x_t
            min_t = t

    t_n = len(X)-1
    return VALLEY if x_0 < X[t_n] else PEAK


def peak_valley_pivots(X, up_thresh, down_thresh):
    """
    Find the peaks and valleys of a series.

    :param X: the series to analyze
    :param up_thresh: minimum relative change necessary to define a peak
    :param down_thesh: minimum relative change necessary to define a valley
    :return: an array with 0 indicating no pivot and -1 and 1 indicating
        valley and peak


    The First and Last Elements
    ---------------------------
    The first and last elements are guaranteed to be annotated as peak or
    valley even if the segments formed do not have the necessary relative
    changes. This is a tradeoff between technical correctness and the
    propensity to make mistakes in data analysis. The possible mistake is
    ignoring data outside the fully realized segments, which may bias
    analysis.
    """
    if down_thresh > 0:
        raise ValueError('The down_thresh must be negative.')

    initial_pivot = identify_initial_pivot(X, up_thresh, down_thresh)
    t_n = len(X)
    pivots = np.zeros(t_n, dtype=np.int_)
    trend = -initial_pivot
    last_pivot_t = 0
    last_pivot_x = X[0]

    pivots[0] = initial_pivot

    # Adding one to the relative change thresholds saves operations. Instead
    # of computing relative change at each point as x_j / x_i - 1, it is
    # computed as x_j / x_1. Then, this value is compared to the threshold + 1.
    # This saves (t_n - 1) subtractions.
    up_thresh += 1
    down_thresh += 1

    for t in range(1, t_n):
        x = X[t]
        r = x / last_pivot_x

        if trend == -1:
            if r >= up_thresh:
                pivots[last_pivot_t] = trend
                trend = PEAK
                last_pivot_x = x
                last_pivot_t = t
            elif x < last_pivot_x:
                last_pivot_x = x
                last_pivot_t = t
        else:
            if r <= down_thresh:
                pivots[last_pivot_t] = trend
                trend = VALLEY
                last_pivot_x = x
                last_pivot_t = t
            elif x > last_pivot_x:
                last_pivot_x = x
                last_pivot_t = t

    if last_pivot_t == t_n-1:
        pivots[last_pivot_t] = trend
    elif pivots[t_n-1] == 0:
        pivots[t_n-1] = -trend

    return pivots


def max_drawdown(X):
    """
    Compute the maximum drawdown of some sequence.

    :return: 0 if the sequence is strictly increasing.
        otherwise the abs value of the maximum drawdown
        of sequence X
    """
    mdd = 0
    peak = X[0]

    for x in X:
        if x > peak:
            peak = x

        dd = (peak - x) / peak

        if dd > mdd:
            mdd = dd

    return mdd if mdd != 0.0 else 0.0


def pivots_to_modes(pivots):
    """
    Translate pivots into trend modes.

    :param pivots: the result of calling ``peak_valley_pivots``
    :return: numpy array of trend modes. That is, between (VALLEY, PEAK] it
    is 1 and between (PEAK, VALLEY] it is -1.
    """

    modes = np.zeros(len(pivots), dtype=np.int_)
    mode = -pivots[0]

    modes[0] = pivots[0]

    for t in range(1, len(pivots)):
        x = pivots[t]
        if x != 0:
            modes[t] = mode
            mode = -x
        else:
            modes[t] = mode

    return modes


def compute_segment_returns(X, pivots):
    """
    :return: numpy array of the pivot-to-pivot returns for each segment."""
    pivot_points = X[pivots != 0]
    return pivot_points[1:] / pivot_points[:-1] - 1.0

使用示例:

import matplotlib
matplotlib.use("TkAgg")
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sys
import pathlib
sys.path.append("%s/zigzag" % pathlib.Path().absolute())
from zigzag import zigzag


def plot_pivots(X, pivots):
    plt.xlim(0, len(X))
    plt.ylim(X.min()*0.99, X.max()*1.01)
    plt.plot(np.arange(len(X)), X, 'k:', alpha=0.5)
    plt.plot(np.arange(len(X))[pivots != 0], X[pivots != 0], 'k-')
    plt.scatter(np.arange(len(X))[pivots == 1], X[pivots == 1], color='g')
    plt.scatter(np.arange(len(X))[pivots == -1], X[pivots == -1], color='r')


np.random.seed(1997)
X = np.cumprod(1 + np.random.randn(100) * 0.01)
pivots = zigzag.peak_valley_pivots(X, 0.03, -0.03)

plot_pivots(X, pivots)
plt.show()

modes = zigzag.pivots_to_modes(pivots)
print(pd.Series(X).pct_change().groupby(modes).describe().unstack())
print(zigzag.compute_segment_returns(X, pivots))

pandas 的数据输入示例:

from pandas_datareader import get_data_yahoo

X = get_data_yahoo('GOOG')['Adj Close']
pivots = peak_valley_pivots(X.values, 0.2, -0.2)
ts_pivots = pd.Series(X, index=X.index)
ts_pivots = ts_pivots[pivots != 0]
X.plot()
ts_pivots.plot(style='g-o');

1.Zigzag3个参数https://github.com/twopirllc/pandas-ta

Zigzag在识别?低点的过程中, 主要设置了以下三个参数: ExtDepth, DextDeviation

以及ExtBackstep。 程序中的表?:

extern int ExtDepth=12;

extern int ExtDeviation=5;

extern int ExtBackstep=3;

说明:

ExtDepth ?于设置?低点是相对与过去多少个Bars(价格图形中的?个柱?)??。 Mt4中默认是12 ExtDeviation ?于设 置重新计算?低点时, 与前??低点的相对点差。 默认值是5 也就是说如果

A)当前?点>上个?点5 ,或者

B)当前低点<上个低点

5的情况下, 则会对之前计算过的ExtBackstepsBars值的?低点进?重新计算。

ExtBackstep ?于设置回退计算的Bars的个数。

2.Zigzag算法

1对计算位置进?初期化

1.1判断是否是第?次进??低点计算, 如果是, 则设定计算位置为除去ExtDepth个图形最初的部分。 1.2如果之前已经计算过, 找到最近已知的三个拐点 (?点或低点) , 将计算位置设置为倒数第三个拐点之后, 重新计 2.从步骤1已经设置好的计算位置开始, 将对?于存储?低点的变量进?初始化, 准备计算?低点 2.1计算ExtDepth区间内的低点, 如果该低点是当前低点, 则进?2.1.1的计算, 并将其记录成?个低点。

2.1.1如果当前低点?上?个低点值?于相对点差(ExtDeviation) 并且之前ExtBackstepBars的记录的中, ?于当前低点的 值清空。

2.2?点的计算如同2.1以及分?处理2.1.1

3.从步骤1已经设置好的计算位置开始, 定义指标?点和低点

3.1如果开始位置为?点, 则接下来寻找低点, 在找到低点之后, 将下?个寻找?标定义为?点

3.2如果开始位置为低点, 则与3.1反之。

以上可能?较难以理解, 我们这边举个例?说明:

假设上次计算的结果如下: 倒数第14Bar出现了?个?点(3.1) 倒数第4个是低点(1.5)

倒数第1个是新的?点(2.1)——因为距离倒数第14已经?于ExtDepth(14-1>12)

Bar-14Bar-4Bar-1 Bar-Current

?(3.1)(1.5)?(2.1) X

对于Bar-Current 即当前的价格X


CaseI.

如果X >=2.1

ExtDeviation 则根据Zigzag的定义, 这将是?个新的?点。 假设这?X=2.3 那么我们绘制指标的时候应该成为:

Bar-14 Bar-4Bar-Current

?(3.1)

(1.5)?(2.3)

CaseII.

如果1.5 - ExtDeviation<

X<2.1 ExtDeviation 则我们继续等待价格的变化, 所绘制的指标也不会变化。

CaseIII.

如果1.5 - ExtDeviation>=

X 则这是?个新的低点。 假设这?X=1.3 则我们绘制指标的时候应该成为:

Bar-14Bar-Current

?(3.1)(1.3)

这个时候, 之前的Bar-4因为在我们定义的ExtBackstep之内(1-4) 所以他的最低值会被清空,

根据算法第三步的定义, 我们会?直寻找低点直到发现Bar-Current 这时候已经遍历过Bar-1 所以Bar-1定义的? 点也不再成为拐点。

这也就是所谓的重绘部分, 也因此诟病为―未来函数‖——因为所看见的当前最后的?低点可能在下个时间段??被抹去。 3Zigzag源码及解释:

Mt4Zigzag源码??的注释特别稀罕, 估计是感觉实现?较简单, 所以?概略去——恩, 极坏的编程习惯。 下?简要说明?下, 中?部分都是追加的解释:

// ——————————————————————

//|

Zigzag.mq4 |

//|

Copyright ?2005-2007, MetaQuotes Software Corp. |

//|

http://www.doczj.com/doc/855cc57301f69e3143329458.html / |

// ——————————————————————

#property copyrightCopyright ?2007, MetaQuotes Software

Corp.

#property

link

http://www.doczj.com/doc/855cc57301f69e3143329458.html /

indicator_chart_window


//主窗?进?指标显?

#property indicator_buffers

1 //指标运?到数值的个数

#property indicator_color1

Red

//指标显?颜?

//—- indicator parameters

//Zigzag的三个参数

extern int ExtDepth=12;

extern int ExtDeviation=5;

extern int ExtBackstep=3;

//—- indicator buffers

//指标的数值存储变量

double

ZigzagBuffer[];

//拐点

double

HighMapBuffer[];

//?点的临时变量数组

double

LowMapBuffer[];

//低点的临时变量数组

int level=3; // recounting’s depth

//最近已知的三个拐点

bool downloadhistory=false; //是否第?次计算

// ——————————————————————//| Custom indicator initialization

function

|

// ——————————————————————

IndicatorBuffers(3);

//对于缓冲储存器分配记忆应??定义指标计算, ?F1可以看到该函数的帮助和解释//—- drawing settings SetIndexStyle(0,DRAW_SECTION);

//划线的风格

//—- indicator buffers mapping

SetIndexBuffer(0,ZigzagBuffer);


SetIndexBuffer(1,HighMapBuffer);

SetIndexBuffer(2,LowMapBuffer);

SetIndexEmptyValue(0,0.0);

//—- indicator short name

IndicatorShortName(ZigZag(

ExtDepth ,ExtDeviation,ExtBackstep

));

//设置指标的简称。

//—- initialization done

return(0);

}

// ——————————————————————

//|

|

// ——————————————————————

//start函数是Mt4的主函数, 当每次价格变动之后都会触发该函数的执?

int start()

{

//变量定义

//i 临时变量;

//limit 算法中所谓的开始计算位置;

//counterZ 临时变量

//whatlookfor ?于标识当前计算的是?点或者低点

int

limit,counterZ,whatlookfor;

//以下都是临时变量, 具体设值时解释

int

shift,back,lasthighpos,lastlowpos;

double val ,res;

double

curlow ,curhigh,lasthigh,lastlow;

if (counted_bars==0

&& downloadhistory) // history was

downloaded

{


//指标载?时counted_bars0 ?downloadhistoryfalse 将在下?次价格变化时进?ArrayInitialize(ZigzagBuffer,0.0); ArrayInitialize(HighMapBuffer,0.0);

ArrayInitialize(LowMapBuffer,0.0);

}

if (counted_bars==0)

{ //初期化, 第?次运?时limit为除去ExtDepth个图形最初的部分。 (算法1.1

limit=Bars-ExtDepth;

downloadhistory=true;

(counted_bars>0)

{//如果之前已经计算过, 找到最近已知的三个拐点 (?点或低点) , 将计算位置设置为倒数第三个拐点。 (算法1.2

while (counterZ

&& i<100)

{

res=ZigzagBuffer[i];

if (res!=0) counterZ ;

i ;

}

i– ; //在上?while中最后?次找到的时候进?

1 所以要-1才能得到真正第三个拐点处。

limit=i; //计算位置赋值

if (LowMapBuffer[i]!=0)

{//如果倒数第三个拐点是低点

curlow=LowMapBuffer[i];

//?标在于寻找?点

whatlookfor=1;

}

else

{

curhigh=HighMapBuffer[i];

}

for (i=limit-1;i>=0;i–)

{//清空第三个拐点后的数值, 准备重新计算最后的拐点

ZigzagBuffer[i]=0.0;

LowMapBuffer[i]=0.0;

HighMapBuffer[i]=0.0;


}

}

//算法Step2部分: 计算?低点

for(shift=limit;

shift>=0; shift–)

{

//2.1计算ExtDepth区间内的低点

val=Low[iLowest(NULL,0,MODE_LOW,ExtDepth,shift)];

if(val==lastlow) val=0.0;

else

{//如果该低点是当前低点,

lastlow=val;

if((Low[shift]-val)>(ExtDeviation*Point))

val=0.0; //是否?上个低点还低ExtDeviation 不是的话则不进?回归处理

for(back=1; back<=ExtBackstep; back )

{//回退ExtBackstepBar 把?当前低点?的纪录值给清空res=LowMapBuffer[shift back];

if((res!=0)&&(res>val))

LowMapBuffer[shift back]=0.0;

}

}

}

//将新的低点进?记录

if (Low[shift]==val) LowMapBuffer[shift]=val; else LowMapBuffer[shift]=0.0;

//— high

val=High[iHighest(NULL,0,MODE_HIGH ,ExtDepth,shift)];

if(val==lasthigh) val=0.0;

else

{

lasthigh=val;

if((val-High[shift])>(ExtDeviation*Point))

val=0.0;

else

for(back=1; back<=ExtBackstep; back )

{

res=HighMapBuffer[shift back];


if((res!=0)&&(res

HighMapBuffer[shift back]=0.0;

}

}

}

if (High[shift]==val) HighMapBuffer[shift]=val; else HighMapBuffer[shift]=0.0;

}

// final cutting

if (whatlookfor==0)

{

lastlow=0;

lasthigh=0;

}

else

{

lastlow=curlow;

lasthigh=curhigh;

//算法step3.定义指标的?低点

for

(shift=limit;shift>=0;shift–)

{

res=0.0;

switch(whatlookfor)

{

//初期化的情况下, 尝试找第?个?点或者是地点

case 0: // look for peak or lawn

if (lastlow==0 &&

lasthigh==0)

{//lastlow lasthigh之前已经初始化, 再次判断以保证正确性? if (HighMapBuffer[shift]!=0)

{//发现?点

lasthigh=High[shift];

lasthighpos=shift;

whatlookfor=-1; //下个寻找?标是低点

ZigzagBuffer[shift]=lasthigh;

res=1;


}

if (LowMapBuffer[shift]!=0)

lastlowpos=shift;

whatlookfor=1;

//下个寻找?标是?点

ZigzagBuffer[shift]=lastlow;

res=1;

}

}

break;

case 1: // look for

peak

//寻找?点

if (LowMapBuffer[shift]!=0.0 &&

LowMapBuffer[shift]

&& HighMapBuffer[shift]==0.0)

{//如果在上个低点和下个?点间发现新的低点, 则把上个低点抹去, 将新发现的低点作为最后?个低点

ZigzagBuffer[lastlowpos]=0.0;

lastlowpos=shift;

lastlow=LowMapBuffer[shift];

ZigzagBuffer[shift]=lastlow;

res=1;

}

if (HighMapBuffer[shift]!=0.0 &&

lasthigh=HighMapBuffer[shift];

lasthighpos=shift; ZigzagBuffer[shift]=lasthigh;

whatlookfor=-1;

//下?个?标将是寻找低点

res=1;

}

break;

case -1: // look for

lawn

//寻找低点

if (HighMapBuffer[shift]!=0.0 && HighMapBuffer[shift]>lasthigh && LowMapBuffer[shift]==0.0) {


ZigzagBuffer[lasthighpos]=0.0; lasthighpos=shift;

lasthigh=HighMapBuffer[shift]; ZigzagBuffer[shift]=lasthigh;

}

if (LowMapBuffer[shift]!=0.0 && HighMapBuffer[shift]==0.0)

lastlow=LowMapBuffer[shift];

lastlowpos=shift;

ZigzagBuffer[shift]=lastlow;

whatlookfor=1;

}

break;

default: return;

}

}

return(0);

}

// ——————————————————————

4.总结

以上就是对Zigzag算法和实现的分析。 希望能够对?家编写指标和EA有所帮助。

相关推荐

MySQL修改密码_mysql怎么改密码忘了怎么办

拥有原来的用户名账户的密码mysqladmin-uroot-ppassword"test123"Enterpassword:【输入原来的密码】忘记原来root密码第一...

数据库密码配置项都不加密?心也太大了吧!

先看一份典型的配置文件...省略...##配置MySQL数据库连接spring.datasource.driver-class-name=com.mysql.jdbc.Driverspr...

Linux基础知识_linux基础入门知识

系统目录结构/bin:命令和应用程序。/boot:这里存放的是启动Linux时使用的一些核心文件,包括一些连接文件以及镜像文件。/dev:dev是Device(设备)的缩写,该目录...

MySQL密码重置_mysql密码重置教程

之前由于修改MySQL加密模式为mysql_native_password时操作失误,导致无法登陆MySQL数据库,后来摸索了一下,对MySQL数据库密码进行重置后顺利解决,步骤如下:1.先停止MyS...

Mysql8忘记密码/重置密码_mysql密码忘了怎么办?

Mysql8忘记密码/重置密码UBUNTU下Mysql8忘记密码/重置密码步骤如下:先说下大概步骤:修改配置文件,使得用空密码可以进入mysql。然后置当前root用户为空密码。再次修改配置文件,不能...

MySQL忘记密码怎么办?Windows环境下MySQL密码重置图文教程

有不少小白在使用Windows进行搭建主机的时候,安装了一些环境后,其中有MySQL设置后,然后不少马大哈忘记了MySQL的密码,导致在一些程序安装及配置的时候无法进行。这个时候怎么办呢?重置密码呗?...

10种常见的MySQL错误,你可中招?_mysql常见错误提示及解决方法

【51CTO.com快译】如果未能对MySQL8进行恰当的配置,您非但可能遇到无法顺利访问、或调用MySQL的窘境,而且还可能给真实的应用生产环境带来巨大的影响。本文列举了十种MySQL...

Mysql解压版安装过程_mysql解压版安装步骤

Mysql是目前软件开发中使用最多的关系型数据库,具体安装步骤如下:第一步:Mysql官网下载最新版(mysql解压版(mysql-5.7.17-winx64)),Mysql官方下载地址为:https...

MySQL Root密码重置指南:Windows新手友好教程

如果你忘记了MySQLroot密码,请按照以下简单步骤进行重置。你需要准备的工具:已安装的MySQL以管理员身份访问命令提示符一点复制粘贴的能力分步操作指南1.创建密码重置文件以管理员...

安卓手机基于python3搜索引擎_python调用安卓so库

环境:安卓手机手机品牌:vivox9s4G运行内存手机软件:utermux环境安装:1.java环境的安装2.redis环境的安装aptinstallredis3.elasticsearch环...

Python 包管理 3 - poetry_python community包

Poetry是一款现代化的Python依赖管理和打包工具。它通过一个pyproject.toml文件来统一管理你的项目依赖、配置和元数据,并用一个poetry.lock文件来锁定所有依赖的精...

Python web在线服务生产环境真实部署方案,可直接用

各位志同道合的朋友大家好,我是一个一直在一线互联网踩坑十余年的编码爱好者,现在将我们的各种经验以及架构实战分享出来,如果大家喜欢,就关注我,一起将技术学深学透,我会每一篇分享结束都会预告下一专题最近经...

官方玩梗:Python 3.14(πthon)稳定版发布,正式支持自由线程

IT之家10月7日消息,当地时间10月7日,Python软件基金会宣布Python3.14.0正式发布,也就是用户期待已久的圆周率(约3.14)版本,再加上谐音梗可戏称为π...

第一篇:如何使用 uv 创建 Python 虚拟环境

想象一下,你有一个使用Python3.10的后端应用程序,系统全局安装了a2.1、b2.2和c2.3这些包。一切运行正常,直到你开始一个新项目,它也使用Python3.10,但需要...

我用 Python 写了个自动整理下载目录的工具

经常用电脑的一定会遇到这种情况:每天我们都在从浏览器、微信、钉钉里下各种文件,什么截图、合同、安装包、临时文档,全都堆在下载文件夹里。起初还想着“过两天再整理”,结果一放就是好几年。结果某天想找一个发...