百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

人人都能看懂的「迭代器、生成器」入门指南

itomcoil 2025-02-17 12:30 15 浏览

来源:早起Python

作者:刘早起

大家好。

这是「人人都能看懂的 Python 进阶」系列。

今天我们将讨论能在很多教程中看到,但又常常搞的头晕转向的迭代器、生成器,以及让新手经常困惑的yield

事实上,和装饰器一样,这三个概念也是绑在一起的,例如你想知道 「什么是yield,那在这之前你必须了解什么是生成器。不过在了解生成器之前,又必须了解什么是迭代器,但在搞明白迭代器之前,你总要知道什么是可迭代对象吧。

下面就让我们按照这个思路,来一点一点前进吧。

01、迭代器

1.1 迭代

在介绍一切之前,先说一下最简单的迭代

>>> for i in range(3):
...    print(i)
0
1
2

就像这样,逐个打印元素的过程就是迭代,这个过程也是我们日常写代码接触到最多的操作。

1.2 可迭代对象

让我们继续,什么是可迭代对象?

就像上面代码一样「能够执行迭代(遍历所有元素)的操作的对象」就是可迭代对象,例如列表

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

就像列表一样,可以使用 for 循环进行迭代的对象,就是可迭代对象,我们常用的字符串、列表、文件等都是可迭代对象。

1.3 对象可迭代的原因

现在相信你应该对「可迭代对象」这个名词有一个大致的了解,为了加深理解,我们继续研究为什么一个对象是可以迭代的

让我们看看当Python解释器遇到迭代操作时,例如for ··· in x是怎么处理的

  • 自动调用 iter(x)函数。
  • 检查对象是否实现了 __iter__ 方法,如果实现了就调用它,获取 一个迭代器。
  • 如果没有实现 __iter__ 方法,但是实现了 __getitem__ 方法, Python 会创建一个迭代器,尝试按顺序(从索引 0 开始)获取元素。
  • 如果两个方法都没有,则会抛出 TypeError 异常,提示该对象不可以迭代

所以「含有 __iter__() 方法或 __getitem__() 方法的对象称之为可迭代对象

让我们来验证上一节定义的list是否有这两个方法

答案是肯定的,当然在Python中有专门的方法去检查一个对象是否可迭代,例如isinstance()

>>> from collections import Iterable
>>> isinstance(mylist, Iterable) 
True

1.4 迭代器

现在来说说相对来说更加抽象一点的迭代器。

简单来说拥有next()方法的可迭代对象就是迭代器,或者说可迭代的对象和迭代器之间的关系是:Python 从可迭代的对象 中获取迭代器。

所以上面说到的列表、元祖、字符串等都不是迭代器,但是,可以使用 Python 内置的 iter() 函数获得它们的迭代器对象,让我们使用迭代器的模式改写之前的案例

>>> mylist = [1,2,3]
>>> it = iter(mylist) #构建迭代器
>>> while True:
        try:
            print(next(it))
        except StopIteration:
            break

1
2
3

上面的代码中先使用可迭代对象构建迭代器 it,不断在迭代器上调用 next 函数,获取下一个元素,如果没有字符了,迭代器会抛出 StopIteration 异常,此时退出循环。

其实看到这里,很多人都会和我一样想,迭代器它到底有什么用或者说在什么场景下我应该使用迭代器呢

实际上很少有人会将好好的 for 循环改写成迭代器形式,大多数教程也是用斐波那契数列来举例,我们学习这些方法背后的原理一方面能更好的理解 Python,并且迭代器也是下面我们要说的生成器的重要基础。

02、生成器

2.1 生成器

现在我们已经知道了for循环背后的机制,但如果数据量太大时,比如for i in range(1000000),使用for循环将所有值存储在内存不仅占用很大的存储空间,并且如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

而生成器的想法就是,我们不需要一次性把这个列表创建出来,只需要记住它的建立规则,之后需要使用的时候一遍计算一遍创建

创建生成器的方法很简单,只需要将列表推导式中的[]换成()就行了,例如

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4

但是我们不能多次执行for i in mygenerator,因为生成器只能使用一次!

另外要强调的是「生成器也是特殊的迭代器」因此它拥有上面几节介绍的迭代器的相关性质!

2.2 yield

最后来说说让任何多人头疼的 yield 语法。

用通俗的话去说,可以将它看成return,只不过它返回的是一个生成器,记住在初学时不需要想明白这个yield到底是什么,但务必了解它的运行机制

下面让我们看一段代码

>>> def f123():
...    print("第一次运行")
...    yield 1
...    print("第二次运行")
...    yield 2
...    print("第三次运行")
...    yield 3
>>> gen = f123()
>>> gen

可以看到,如果一个函数,使用yield关键词返回值,那么它就是一个生成器函数(f123)

与普通函数不同,生成器函数被调用后,其函数体内的代码并不会立即执行(执行gen = f123()后没有打印出任何值),而是返回一个生成器(gen)!

上面说到,生成器也是迭代器,且yield就当作return看,所以下面的代码运行结果是可以轻松猜到的

>>> for item in gen:   
...    print(item)
第一次运行
1
第二次运行
2
第三次运行
3

重点来了,如果使用 next(gen) 会发生什么?

>>> next(gen)
第一次运行
1
>>> next(gen)
第二次运行
2
>>> next(gen)
第三次运行
3
>>> next(gen)
Traceback (most recent call last)
 in 
----> 1 next(gen)

StopIteration: 

我们可以看到, 每次调用next(gen)都只运行到yield位置停止,下一次运行时从上一次结束的位置开始! 并且该生成器的长度取决于函数中yield出现的次数。

在这里想多插一句,虽然我们将yield当成return看,上面的打印出来的1、2、3我们应该将它称为生成值,而不是返回值,这不是某个函数返回的值,而是生成器生成的!希望大家可以再去体会一下!

好了,如果你看明白了上面这个最简单的 yield 函数示例,我们接着看下一个例子,生成器也可以接受参数。

在生成器函数中,如果将 yield 放在左边,就可以使用 send 方法传递参数,注意看下面的案例

def simple_coro2(a):

    print('-> Started: a =', a)
    b = yield a
    print('-> Received: b =', b)
    c = yield a + b

    print('-> Received: c =', c)

gen = simple_gen(14)

这里我们依旧是定义了一个生成器函数,思考一下执行next(gen)会发生什么

>>> next(gen)
-> Started: a = 14
14

上一个例子说到「每次调用next(gen)都只运行到yield位置停止,下一次运行时从上一次结束的位置开始!

所以现在并没有执行b = yield a,仅是将左边yield a执行,生成了a并打印 -> Started: a = 14 消息,然后产出 a 的值,并且暂停,等待为 b 赋值。之后可以使用gen.send(28)来传递28给b

>>> gen.send(28)
-> Received: b = 28
42

依旧是执行到yield a + b结束,并等待等待为 c 赋值。现在如果我们给c赋值会发生什么?

>>> gen.send(99)
-> Received: c = 99
Traceback (most recent call last)
 in 
----> 1 gen.send(99)

StopIteration:

可以看到在把数字 99 发给暂停的生成器;计算 yield 表达式,得到 99,然后把 那个数绑定给 c。打印 -> Received: c = 99 消息然后终止, 导致生成器对象抛出 StopIteration 异常。

现在可以通过下面一张流程图来加深上面案例的过程,可能不太适应这种 = 右边的代码在赋值之前执行并暂停的形式,但是必须要理解,这是掌握 yield 最关键的知识!

好了,以上就是有关 Python 中迭代器、生成器的简单入门讲解!

相关推荐

Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)

在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...

Connect 2.0来了,还有Nuke和Maya新集成

ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...

Magicgui:不会GUI编程也能轻松构建Python GUI应用

什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...

Python入坑系列:桌面GUI开发之Pyside6

阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...

Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI

通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...

pyside2的基础界面(pyside2显示图片)

今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...

Python GUI开发:打包PySide2应用(python 打包pyc)

之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...

使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂

PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...

pycharm中conda解释器无法配置(pycharm安装的解释器不能用)

之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...

Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建

Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...

Python操作系统资源管理与监控(python调用资源管理器)

在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...

本地部署开源版Manus+DeepSeek创建自己的AI智能体

1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...

一文教会你,搭建AI模型训练与微调环境,包学会的!

一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...

使用scikit-learn为PyTorch 模型进行超参数网格搜索

scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...