百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Python数据结构:堆的实现(python数据结构教程)

itomcoil 2025-03-29 18:46 8 浏览

在本文中,我们将了解 Python 中的堆是什么以及怎样实现它。我们将通过最小堆的 python 程序实现来理解堆的概念。最后,我们将学习堆数据结构的时间复杂度和应用。那么,让我们开始吧!

什么是堆?

堆是一种遵循“完全”二叉树属性并满足堆属性的数据结构。因此,它也被称为二叉堆。完全二叉树是每一层都被填满,并且所有节点都尽可能靠左的树。在二叉树中,有可能最后一层是空的并且没有被填充。在堆数据结构中,我们为树的每个节点分配键值或权重。将根节点键值与子节点进行比较,然后根据比较大小将树相应地排列为两类,即最大堆和最小堆。堆数据结构可以用作堆排序算法来对数组或列表中的元素进行排序。堆排序算法可用于优先队列、订单统计、Prim 算法或Dijkstra 算法等。简而言之,堆数据结构在要重复删除最高或最低优先级对象时经常被使用。

建堆-Heapify?

首先我们需要了解什么是 heapify。使用二叉树创建堆数据结构的过程称为 Heapify。heapify 过程用于创建 Max-Heap 或 Min-Heap。让我们使用下面的示例来研究 Heapify:

考虑如下图所示的输入数组:

使用这个数组,我们将创建完整的二叉树。 我们从最后一个非叶子节点 (len(array)//2-1) 开始,将其作为当前的节点。如果要创建Min-Heap,我们要保证任何当前节点小于他的两个子节点。设当前节点的序号是k,那么其左子节点的序号是2k+1,右子节点是2k+2。Heapify就是要保证上述的局部性质,首先完成父节点的heapify,还要沿着一条树的路径递归完成子节点的heapify。接下来就是倒着数组序号进行Heapify,这样就完成了整个数组的堆化。数组在堆化过程中是以如下方式变化的:[3, 9, 2, 1, 4, 5]--> [3, 1, 2, 9, 4, 5]--> [3, 1, 2, 9, 4, 5]--> [1, 3, 2, 9, 4, 5]。以下程序演示了怎样heapify一个数组。时间复杂度是O(nlogn)

def min_heapify(A,k):
    print(A)
    l = left(k)
    r = right(k)
    if l < len(A) and A[l] < A[k]:
        smallest = l
    else:
        smallest = k
    if r < len(A) and A[r] < A[smallest]:
        smallest = r
    if smallest != k:
        A[k], A[smallest] = A[smallest], A[k]
        min_heapify(A, smallest)

def left(k):
    return 2 * k + 1

def right(k):
    return 2 * k + 2

def build_min_heap(A):
    n = int((len(A)//2)-1)
    for k in range(n, -1, -1):
        min_heapify(A,k)

A = [3,9,2,1,4,5]
build_min_heap(A)

理解min-heapify函数

此函数可以将节点及其所有后代(子节点及其子节点)遵循堆属性。它通过交换节点的键值来重新组织堆里的数据,使得当前节点成为其子树中的最小节点,遵循堆属性。

该函数首先在给定节点及其子节点中找到具有最小值的节点。然后它将给定节点(比如 i)与找到的最小值节点(比如 j)交换,然后在节点 j 上(递归地)调用 min-heapify 函数,以确保分配给节点 j 的新值确实不要破坏其子树中的堆属性。由于最多要遍历树的深度,所以它的时间复杂度是O(d),其中d是深度,或者,就节点数而言,O(log n),n是堆中的元素。

退出堆顶元素:heappop函数

该函数弹出堆的最小值(根元素)。

这实际上是通过将根节点与最后一个节点交换并删除现在的最后一个节点(包含最小值)然后为根节点调用 min-heapify 以在由于交换引起的更改后维护堆属性来完成的。

由于我们只需要调用一次min-heapify,因此时间复杂度为 O(log n),其中 n 是元素的数量,或者 O(h),其中 h 是树的高度,即 log n。

加入新元素:heappush 函数

此函数将一个新元素推入堆中,并将其排列到正确的位置,同时保持堆属性。

这实际上是通过在堆的末尾添加一个新节点来完成的。现在为了维护堆属性,我们从最后一个节点向上遍历(并在需要的地方交换)以修复可能被违反的堆属性。

与 heappop 类似,这里的时间复杂度是 O(log n),因为我们只需要遍历子树的高度。

获得最小值:extractMin 函数

此函数从堆中返回最高优先级(根元素)。由于我们只需要返回根的值而不对堆进行任何更改,并且根在 O(1) 时间内可以访问,因此函数的时间复杂度为 O(1)。

import sys
 
#defining a class min_heap for the heap data structure
 
class min_heap: 
    def __init__(self, sizelimit):
        self.sizelimit = sizelimit
        self.cur_size = 0
        self.Heap = [0]*(self.sizelimit + 1)
        self.Heap[0] = sys.maxsize * -1
        self.root = 1
 
    # helper function to swap the two given nodes of the heap
    # this function will be needed for heapify and insertion to swap nodes not in order
    def swapnodes(self, node1, node2):
        self.Heap[node1], self.Heap[node2] = self.Heap[node2], self.Heap[node1]
  
    # THE MIN_HEAPIFY FUNCTION
    def min_heapify(self, i):
  
        # If the node is a not a leaf node and is greater than any of its child
        if not (i >= (self.cur_size//2) and i <= self.cur_size: if self.heapi> self.Heap[2 * i]  or  self.Heap[i] > self.Heap[(2 * i) + 1]): 
                if self.Heap[2 * i] < self.heap2 i 1: swap the node with the left child and then call the min_heapify function it self.swapnodesi 2 i self.min_heapify2 i else: swap the node with right child and then call the min_heapify function it self.swapnodesi 2 i 1 self.min_heapify2 i 1 the heappush function def heappushself element: if self.cur_size>= self.sizelimit :
            return
        self.cur_size+= 1
        self.Heap[self.cur_size] = element 
        current = self.cur_size
        while self.Heap[current] < self.Heap[current//2]:
            self.swapnodes(current, current//2)
            current = current//2
  
    # THE HEAPPOP FUNCTION
    def heappop(self):
        last = self.Heap[self.root]
        self.Heap[self.root] = self.Heap[self.cur_size]
        self.cur_size -= 1
        self.min_heapify(self.root)
        return last
  
    # THE BUILD_HEAP FUNCTION
    def build_heap(self): 
        for i in range(self.cur_size//2, 0, -1):
            self.min_heapify(i)
  
  
    # helper function to print the heap
    def print_heap(self):
        for i in range(1, (self.cur_size//2)+1):
            print("Parent Node is "+ str(self.Heap[i])+" Left Child is "+ str(self.Heap[2 * i]) +                  " Right Child is "+ str(self.Heap[2 * i + 1]))
  
  
# Driver Code
minHeap = min_heap(10)
minHeap.heappush(15)
minHeap.heappush(7)
minHeap.heappush(9)
minHeap.heappush(4)
minHeap.heappush(13)
minHeap.print_heap()

相关推荐

点过的网页会变色?没错,这玩意把你的浏览记录漏光了

提起隐私泄露这事儿,托尼其实早就麻了。。。平时网购、换手机号、注册各种账号之类的都会咔咔泄露,根本就防不住。但托尼真是没想到,浏览器里会有一个看起来完全人畜无害的功能,也在偷偷泄露我们的个人隐私,而且...

Axure教程:高保真数据可视化原型

本文将介绍如何制作Axure高保真数据可视化原型,供大家参考和学习。高保真数据可视化原型设计,称得上是Axure高阶水平。数据可视化在原型设计中是一个重要的分支,但是对于Axure使用者具有一定要求。...

Flutter web开发中禁用浏览器后退按钮

路由采用的go-router路由框架:finalrootNavigatorKey=GlobalKey<NavigatorState>();finalGoRouterrouter...

jQuery 控制属性和样式

标记的属性each()遍历元素:each(callback)方法主要用于对选择器进行遍历,它接受一个函数为参数,该函数接受一个参数,指代元素的序号。对于标记的属性而言,可以利用each()方法配合th...

微信小程序入门教程之二:页面样式

这个系列的上一篇教程,教大家写了一个最简单的Helloworld微信小程序。但是,那只是一个裸页面,并不好看。今天接着往下讲,如何为这个页面添加样式,使它看上去更美观,教大家写出实际可以使用的页...

如何在Windows11的任务栏中禁用和删除天气小部件图标?

微软该公司已在Windows11的任务栏中添加了一个天气小部件图标,作为小部件的入口点。这个功能与之前Win10上的新闻与资讯功能相同,但是有的用户不喜欢想要关闭,不知道如何操作,下面小编为大家带来...

CSS伪类选择器大全:提升网页交互与样式的神奇工具

CSS伪类选择器是前端开发中不可或缺的强大工具,它们允许我们根据元素的状态、位置或用户行为动态地应用样式。本文将全面介绍常用的伪类选择器,并通过代码示例展示其实际应用场景。一、基础交互伪类1.超链接...

7个Axure使用小技巧

编辑导读:对于Axure原型工具,很少有产品经过系统学习,一般都是直接上手,边摸索边学习,这直接导致很多快捷操作被忽视。笔者在日常工作中总结出以下小技巧,希望对各位有帮助。之前整理了2期Axure的...

JavaScript黑暗技巧:禁止浏览器点击“后退”按钮

浏览网页时,当从A页面点击跳转到B页面后,一般情况下,可以点击浏览器上的“后退”按钮返回A页面。如果进入B页面后,B页面想让访问者留下,禁止返回,是否可以实现呢?这简直是要控制浏览器的行为,虽然有些邪...

对齐PyTorch,一文详解OneFlow的DataLoader实现

撰文|赵露阳在最新的OneFlowv0.5.0版本中,我们增加了许多新特性,比如:新增动态图特性:OneFlow默认以动态图模式(eager)运行,与静态图模式(graph)相比,更容易搭建网...

Python计算机视觉编程 第一章 基本的图像操作和处理

以下是使用Python进行基本图像操作和处理的示例代码:使用PIL库加载图像:fromPILimportImageimage=Image.open("image.jpg"...

PyTorch 深度学习实战(31):可解释性AI与特征可视化

在上一篇文章中,我们探讨了模型压缩与量化部署技术。本文将深入可解释性AI与特征可视化领域,揭示深度学习模型的决策机制,帮助开发者理解和解释模型的内部工作原理。一、可解释性AI基础1.核心概念特征重要...

学习编程第177天 python编程 富文本框text控件的使用

今天学习的是刘金玉老师零基础Python教程第72期,主要内容是python编程富文本框text控件。一、知识点1.tag_config方法:利用某个别名作为标签,具体的对应标签的属性功能配置在后面参...

用Python讓電腦攝像頭實現掃二維碼

importsys#系統模組,用來存取命令列參數與系統功能importcv2#OpenCV,處理影像與相機操作importnumpyasnp#Numpy,用來處理數值與...

使用Transformer来做物体检测

作者:JacobBriones编译:ronghuaiyang导读这是一个Facebook的目标检测Transformer(DETR)的完整指南。介绍DEtectionTRansformer(D...