整理20个Pandas统计函数(pandas counts)
itomcoil 2025-03-29 18:46 22 浏览
大家好,最近整理了pandas中20个常用统计函数和用法,建议收藏学习~
模拟数据
为了解释每个函数的使用,模拟了一份带有空值的数据:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame({
"sex":["male","male","female","female","male"],
"age":[22,24,25,26,24],
"chinese":[100,120,110,100,90],
"math":[90,np.nan,100,80,120], # 存在空值
"english":[90,130,90,80,100]})
df
描述统计信息describe
descirbe方法只能针对序列或数据框,一维数组是没有这个方法的;同时默认只能针对数值型的数据进行统计:
DataFrame.describe(percentiles=None,include=None,exclude=None)
- percentiles:可选择的百分数,列表形式;数值在0-1之间,默认是[.25,.5,.75]
- include/exclude:包含和排除的数据类型信息
返回的信息包含:
- 非空值的数量count;特例:math字段中有一个空值
- 均值mean
- 标准差std
- 最小值min
- 最大值max
- 25%、50%、75%分位数
df.describe()
添加了参数后的情况,我们发现:
- sex字段的相关信息也被显示出来
- 显示的信息更丰富,多了unique、top、freq等等
非空值数量count
返回的是每个字段中非空值的数量
In [5]:
df.count()
Out[5]:
sex 5
age 5
chinese 5
math 4 # 包含一个空值
english 5
dtype: int64
求和sum
In [6]:
df.sum()
在这里我们发现:如果字段是object类型的,sum函数的结果就是直接将全部取值拼接起来
Out[6]:
sex malemalefemalefemalemale # 拼接
age 121 # 相加求和
chinese 520
math 390.0
english 490
dtype: object
最大值max
In [7]:
df.max()
针对字符串的最值(最大值或者最小值),是根据字母的ASCII码大小来进行比较的:
- 先比较首字母的大小
- 首字母相同的话,再比较第二个字母
Out[7]:
sex male
age 26
chinese 120
math 120.0
english 130
dtype: object
最小值min
和max函数的求解是类似的:
In [8]:
df.min()
Out[8]:
sex female
age 22
chinese 90
math 80.0
english 80
dtype: object
分位数quantile
返回指定位置的分位数
In [9]:
df.quantile(0.2)
Out[9]:
age 23.6
chinese 98.0
math 86.0
english 88.0
Name: 0.2, dtype: float64
In [10]:
df.quantile(0.25)
Out[10]:
age 24.0
chinese 100.0
math 87.5
english 90.0
Name: 0.25, dtype: float64
In [11]:
df.quantile(0.75)
Out[11]:
age 25.0
chinese 110.0
math 105.0
english 100.0
Name: 0.75, dtype: float64
通过箱型图可以展示一组数据的25%、50%、75%的中位数:
In [12]:
plt.figure(figsize=(12,6))#设置画布的尺寸
plt.boxplot([df["age"],df["chinese"],df["english"]],
labels = ["age","chinese","english"],
# vert=False,
showmeans=True,
patch_artist = True,
boxprops = {'color':'orangered','facecolor':'pink'}
# showgrid=True
)
plt.show()
箱型图的具体展示信息:
均值mean
一组数据的平均值
In [13]:
df.mean()
Out[13]:
age 24.2
chinese 104.0
math 97.5
english 98.0
dtype: float64
通过下面的例子我们发现:如果字段中存在缺失值(math存在缺失值),此时样本的个数会自动忽略缺失值的总数
In [14]:
390/4 # 个数不含空值
Out[14]:
97.5
中值/中位数median
比如:1,2,3,4,5 的中位数就是3
再比如:1,2,3,4,5,6 的中位数就是 3+4 = 3.5
In [15]:
df.median()
Out[15]:
age 24.0
chinese 100.0
math 95.0
english 90.0
dtype: float64
众数mode
一组数据中出现次数最多的数
In [16]:
df.mode()
Out[16]:
最大值索引idmax
idxmax() 返回的是最大值得索引
In [17]:
df["age"].idxmax()
Out[17]:
3
In [18]:
df["chinese"].idxmin()
Out[18]:
4
不能字符类型的字段使用该函数,Pandas不支持:
In [19]:
df["sex"].idxmax()
最小值索引idxmin
返回最小值所在的索引
In [20]:
df["age"].idxmin()
Out[20]:
0
In [21]:
df["math"].idxmin()
Out[21]:
3
In [22]:
df["sex"].idxmin()
不能字符类型的字段使用该函数,Pandas不支持:
方差var
计算一组数据的方差,需要注意的是:numpy中的方差叫总体方差,pandas中的方差叫样本方差
标准差(或方差)分为 总体标准差(方差)和 样本标准差(方差)
- 前者分母为n,右pian的;后者分母为n-1,是无偏的
- pandas里是算无偏的;numpy里是有偏的
In [23]:
df.var()
Out[23]:
age 2.200000
chinese 130.000000
math 291.666667 # pandas计算结果
english 370.000000
dtype: float64
In [24]:
df["math"].var()
Out[24]:
291.6666666666667
In [25]:
np.var(df["math"]) # numpy计算结果
Out[25]:
218.75
In [26]:
np.var(df["age"])
Out[26]:
1.7600000000000002
In [27]:
np.var(df["english"])
Out[27]:
296.0
标准差std
返回的是一组数据的标准差
In [28]:
df.std()
Out[28]:
age 1.483240
chinese 11.401754
math 17.078251
english 19.235384
dtype: float64
In [29]:
np.std(df["math"])
Out[29]:
14.79019945774904
In [30]:
np.std(df["english"])
Out[30]:
17.204650534085253
In [31]:
np.std(df["age"])
Out[31]:
1.32664991614216
如何理解pandas和numpy两种方法对方差的求解不同:
平均绝对偏差mad
In [32]:
df.mad()
Out[32]:
age 1.04
chinese 8.80
math 12.50
english 13.60
dtype: float64
以字段age为例:
In [33]:
df["age"].mad()
Out[33]:
1.0399999999999998
In [34]:
df["age"].tolist()
Out[34]:
[22, 24, 25, 26, 24]
In [35]:
age_mean = df["age"].mean()
age_mean
Out[35]:
24.2
In [36]:
(abs(22-age_mean) + abs(24-age_mean) + abs(25-age_mean)
+ abs(26-age_mean) + abs(24-age_mean)) / 5
Out[36]:
1.0399999999999998
偏度-skew
偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。
偏度(Skewness)亦称偏态、偏态系数,表征概率分布密度曲线相对于平均值不对称程度的特征数。
直观看来就是密度函数曲线尾部的相对长度。定义上偏度是样本的三阶标准化矩:
In [37]:
df.skew()
Out[37]:
age -0.551618
chinese 0.404796
math 0.752837
english 1.517474
dtype: float64
In [38]:
df["age"].skew()
Out[38]:
-0.5516180692881046
峰度-kurt
返回的是峰度值
In [39]:
df.kurt()
Out[39]:
age 0.867769
chinese -0.177515
math 0.342857
english 2.607743
dtype: float64
In [40]:
df["age"].kurt()
Out[40]:
0.8677685950413174
In [41]:
df["math"].kurt()
Out[41]:
0.3428571428571434
绝对值abs
返回数据的绝对值:
In [45]:
df["age"].abs()
Out[45]:
0 22
1 24
2 25
3 26
4 24
Name: age, dtype: int64
如果存在缺失值,绝对值函数求解后仍是NaN:
In [46]:
df["math"].abs()
Out[46]:
0 90.0
1 NaN
2 100.0
3 80.0
4 120.0
Name: math, dtype: float64
绝对值函数是针对数值型的字段,不能对字符类型的字段求绝对值:
In [47]:
# 字符类型的数据报错
df["sex"].abs()
元素乘积prod
In [48]:
df.prod()
Out[48]:
age 8.236800e+06
chinese 1.188000e+10
math 8.640000e+07
english 8.424000e+09
dtype: float64
In [49]:
df["age"].tolist()
Out[49]:
[22, 24, 25, 26, 24]
In [50]:
22 * 24 * 25 * 26 * 24
Out[50]:
8236800
累计求和cumsum
In [51]:
df.cumsum()
累计乘积cumprod
In [52]:
df["age"].cumprod()
Out[52]:
0 22
1 528
2 13200
3 343200
4 8236800
Name: age, dtype: int64
In [53]:
df["math"].cumprod()
Out[53]:
0 90.0
1 NaN
2 9000.0
3 720000.0
4 86400000.0
Name: math, dtype: float64
In [54]:
# 字符类型字段报错
df["sex"].cumprod()
20个统计函数
最后再总结下Pandas中常用来描述统计信息的函数:
原文链接:
https://mp.weixin.qq.com/s/QVAPbiAKzD0OS0V2VQN2BA
相关推荐
- MySQL修改密码_mysql怎么改密码忘了怎么办
-
拥有原来的用户名账户的密码mysqladmin-uroot-ppassword"test123"Enterpassword:【输入原来的密码】忘记原来root密码第一...
- 数据库密码配置项都不加密?心也太大了吧!
-
先看一份典型的配置文件...省略...##配置MySQL数据库连接spring.datasource.driver-class-name=com.mysql.jdbc.Driverspr...
- Linux基础知识_linux基础入门知识
-
系统目录结构/bin:命令和应用程序。/boot:这里存放的是启动Linux时使用的一些核心文件,包括一些连接文件以及镜像文件。/dev:dev是Device(设备)的缩写,该目录...
- MySQL密码重置_mysql密码重置教程
-
之前由于修改MySQL加密模式为mysql_native_password时操作失误,导致无法登陆MySQL数据库,后来摸索了一下,对MySQL数据库密码进行重置后顺利解决,步骤如下:1.先停止MyS...
- Mysql8忘记密码/重置密码_mysql密码忘了怎么办?
-
Mysql8忘记密码/重置密码UBUNTU下Mysql8忘记密码/重置密码步骤如下:先说下大概步骤:修改配置文件,使得用空密码可以进入mysql。然后置当前root用户为空密码。再次修改配置文件,不能...
- MySQL忘记密码怎么办?Windows环境下MySQL密码重置图文教程
-
有不少小白在使用Windows进行搭建主机的时候,安装了一些环境后,其中有MySQL设置后,然后不少马大哈忘记了MySQL的密码,导致在一些程序安装及配置的时候无法进行。这个时候怎么办呢?重置密码呗?...
- 10种常见的MySQL错误,你可中招?_mysql常见错误提示及解决方法
-
【51CTO.com快译】如果未能对MySQL8进行恰当的配置,您非但可能遇到无法顺利访问、或调用MySQL的窘境,而且还可能给真实的应用生产环境带来巨大的影响。本文列举了十种MySQL...
- Mysql解压版安装过程_mysql解压版安装步骤
-
Mysql是目前软件开发中使用最多的关系型数据库,具体安装步骤如下:第一步:Mysql官网下载最新版(mysql解压版(mysql-5.7.17-winx64)),Mysql官方下载地址为:https...
- MySQL Root密码重置指南:Windows新手友好教程
-
如果你忘记了MySQLroot密码,请按照以下简单步骤进行重置。你需要准备的工具:已安装的MySQL以管理员身份访问命令提示符一点复制粘贴的能力分步操作指南1.创建密码重置文件以管理员...
- 安卓手机基于python3搜索引擎_python调用安卓so库
-
环境:安卓手机手机品牌:vivox9s4G运行内存手机软件:utermux环境安装:1.java环境的安装2.redis环境的安装aptinstallredis3.elasticsearch环...
- Python 包管理 3 - poetry_python community包
-
Poetry是一款现代化的Python依赖管理和打包工具。它通过一个pyproject.toml文件来统一管理你的项目依赖、配置和元数据,并用一个poetry.lock文件来锁定所有依赖的精...
- Python web在线服务生产环境真实部署方案,可直接用
-
各位志同道合的朋友大家好,我是一个一直在一线互联网踩坑十余年的编码爱好者,现在将我们的各种经验以及架构实战分享出来,如果大家喜欢,就关注我,一起将技术学深学透,我会每一篇分享结束都会预告下一专题最近经...
- 官方玩梗:Python 3.14(πthon)稳定版发布,正式支持自由线程
-
IT之家10月7日消息,当地时间10月7日,Python软件基金会宣布Python3.14.0正式发布,也就是用户期待已久的圆周率(约3.14)版本,再加上谐音梗可戏称为π...
- 第一篇:如何使用 uv 创建 Python 虚拟环境
-
想象一下,你有一个使用Python3.10的后端应用程序,系统全局安装了a2.1、b2.2和c2.3这些包。一切运行正常,直到你开始一个新项目,它也使用Python3.10,但需要...
- 我用 Python 写了个自动整理下载目录的工具
-
经常用电脑的一定会遇到这种情况:每天我们都在从浏览器、微信、钉钉里下各种文件,什么截图、合同、安装包、临时文档,全都堆在下载文件夹里。起初还想着“过两天再整理”,结果一放就是好几年。结果某天想找一个发...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)