一文读懂YOLO11(原理介绍+代码详见+结构框图)
itomcoil 2024-12-15 13:57 71 浏览
本文主要内容:YOLO11 全新发布(原理介绍+代码详见+结构框图)| YOLO11如何训练自己的数据集(NEU-DET为案列)
1.YOLO11介绍
Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。
目标检测性能
语义分割性能
Pose关键点检测性能
结构图如下:
1.1C3k2
C3k2,结构图如下
C3k2,继承自类C2f,其中通过c3k设置False或者Ture来决定选择使用C3k还是Bottleneck
实现代码ultralytics/nn/modules/block.py
class C3k2(C2f):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
super().__init__(c1, c2, n, shortcut, g, e)
self.m = nn.ModuleList(
C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
)
class C3k(C3):
"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
"""Initializes the C3k module with specified channels, number of layers, and configurations."""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
# self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
1.2 C2PSA介绍
借鉴V10 PSA结构,实现了C2PSA和C2fPSA,最终选择了基于C2的C2PSA(可能涨点更好?)
实现代码ultralytics/nn/modules/block.py
class PSABlock(nn.Module):
"""
PSABlock class implementing a Position-Sensitive Attention block for neural networks.
This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
with optional shortcut connections.
Attributes:
attn (Attention): Multi-head attention module.
ffn (nn.Sequential): Feed-forward neural network module.
add (bool): Flag indicating whether to add shortcut connections.
Methods:
forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers.
Examples:
Create a PSABlock and perform a forward pass
>>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True)
>>> input_tensor = torch.randn(1, 128, 32, 32)
>>> output_tensor = psablock(input_tensor)
"""
def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None:
"""Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction."""
super().__init__()
self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
self.add = shortcut
def forward(self, x):
"""Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor."""
x = x + self.attn(x) if self.add else self.attn(x)
x = x + self.ffn(x) if self.add else self.ffn(x)
return x
class C2PSA(nn.Module):
"""
C2PSA module with attention mechanism for enhanced feature extraction and processing.
This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
Attributes:
c (int): Number of hidden channels.
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.
Methods:
forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
Notes:
This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
Examples:
>>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
>>> input_tensor = torch.randn(1, 256, 64, 64)
>>> output_tensor = c2psa(input_tensor)
"""
def __init__(self, c1, c2, n=1, e=0.5):
"""Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
super().__init__()
assert c1 == c2
self.c = int(c1 * e)
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv(2 * self.c, c1, 1)
self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
def forward(self, x):
"""Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
a, b = self.cv1(x).split((self.c, self.c), dim=1)
b = self.m(b)
return self.cv2(torch.cat((a, b), 1))
class C2fPSA(C2f):
"""
C2fPSA module with enhanced feature extraction using PSA blocks.
This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction.
Attributes:
c (int): Number of hidden channels.
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
m (nn.ModuleList): List of PSA blocks for feature extraction.
Methods:
forward: Performs a forward pass through the C2fPSA module.
forward_split: Performs a forward pass using split() instead of chunk().
Examples:
>>> import torch
>>> from ultralytics.models.common import C2fPSA
>>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5)
>>> x = torch.randn(1, 64, 128, 128)
>>> output = model(x)
>>> print(output.shape)
"""
def __init__(self, c1, c2, n=1, e=0.5):
"""Initializes the C2fPSA module, a variant of C2f with PSA blocks for enhanced feature extraction."""
assert c1 == c2
super().__init__(c1, c2, n=n, e=e)
self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))
1.3 11 Detect介绍
分类检测头引入了DWConv(更加轻量级,为后续二次创新提供了改进点),结构图如下(和V8的区别):
实现代码ultralytics/nn/modules/head.py
self.cv2 = nn.ModuleList(
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
)
self.cv3 = nn.ModuleList(
nn.Sequential(
nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)),
nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)),
nn.Conv2d(c3, self.nc, 1),
)
for x in ch
)
1.4 YOLO11和 YOLOv8的区别
------------------------------- YOLO11 ----------------------------------
# Ultralytics YOLO , AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
------------------------------- YOLOv8 ----------------------------------
# Ultralytics YOLO , AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
2.如何训练YOLO11模型
2.1 如何训练NEU-DET数据集
2.1.1 数据集介绍
直接搬运v8的就能使用
2.1.2 超参数修改
位置如下default.yaml
2.1.3 如何训练
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('ultralytics/cfg/models/11/yolo11-EMA_attention.yaml')
#model.load('yolov8n.pt') # loading pretrain weights
model.train(data='data/NEU-DET.yaml',
cache=False,
imgsz=640,
epochs=200,
batch=8,
close_mosaic=10,
device='0',
optimizer='SGD', # using SGD
project='runs/train',
name='exp',
)
2.2 训练结果可视化结果
YOLO11n summary (fused): 238 layers, 2,583,322 parameters, 0 gradients, 6.3 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 21/21 [00:07<00:00, 2.93it/s]
all 324 747 0.765 0.679 0.768 0.433
crazing 47 104 0.678 0.337 0.508 0.22
inclusion 71 190 0.775 0.705 0.79 0.398
patches 59 149 0.808 0.859 0.927 0.636
pitted_surface 61 93 0.81 0.667 0.779 0.483
rolled-in_scale 56 117 0.684 0.593 0.67 0.317
scratches 54 94 0.833 0.915 0.934 0.544
?
?
相关推荐
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
-
在开始本文之前提醒各位朋友,Python记得安装PyQt5库文件,Python语言功能很强,但是Python自带的GUI开发库Tkinter功能很弱,难以开发出专业的GUI。好在Python语言的开放...
- Connect 2.0来了,还有Nuke和Maya新集成
-
ftrackConnect2.0现在可以下载了--重新设计的桌面应用程序,使用户能够将ftrackStudio与创意应用程序集成,发布资产等。这个新版本的发布中还有两个Nuke和Maya新集成,...
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
-
什么是MagicguiMagicgui是一个Python库,它允许开发者仅凭简单的类型注解就能快速构建图形用户界面(GUI)应用程序。这个库基于Napari项目,利用了Python的强大类型系统,使得...
- Python入坑系列:桌面GUI开发之Pyside6
-
阅读本章之后,你可以掌握这些内容:Pyside6的SignalsandSlots、Envents的作用,如何使用?PySide6的Window、DialogsandAlerts、Widgets...
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
-
通过本文章,你可以了解一下内容:如何安装和使用Pyside6designerdesigner有哪些的特性通过designer如何转成python代码以前以为Pyside6designer需要在下载...
- pyside2的基础界面(pyside2显示图片)
-
今天我们来学习pyside2的基础界面没有安装过pyside2的小伙伴可以看主页代码效果...
- Python GUI开发:打包PySide2应用(python 打包pyc)
-
之前的文章我们介绍了怎么使用PySide2来开发一个简单PythonGUI应用。这次我们来将上次完成的代码打包。我们使用pyinstaller。注意,pyinstaller默认会将所有安装的pack...
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
-
PySide2是Qt框架的Python绑定,允许你使用Python创建功能强大的跨平台GUI应用程序。PySide2的基本使用方法:安装PySide2pipinstallPy...
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
-
之前用的好好的pycharm正常配置解释器突然不能用了?可以显示有这个环境然后确认后可以conda正在配置解释器,但是进度条结束后还是不成功!!试过了pycharm重启,pycharm重装,anaco...
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
-
Conda虚拟环境在Linux下的全面使用指南:从基础操作到Llama-Factory大模型微调环境搭建在当今的AI开发与数据分析领域,conda虚拟环境已成为Linux系统下管理项目依赖的标配工具。...
- Python操作系统资源管理与监控(python调用资源管理器)
-
在现代计算环境中,对操作系统资源的有效管理和监控是确保应用程序性能和系统稳定性的关键。Python凭借其丰富的标准库和第三方扩展,提供了强大的工具来实现这一目标。本文将探讨Python在操作系统资源管...
- 本地部署开源版Manus+DeepSeek创建自己的AI智能体
-
1、下载安装Anaconda,设置conda环境变量,并使用conda创建python3.12虚拟环境。2、从OpenManus仓库下载代码,并安装需要的依赖。3、使用Ollama加载本地DeepSe...
- 一文教会你,搭建AI模型训练与微调环境,包学会的!
-
一、硬件要求显卡配置:需要Nvidia显卡,至少配备8G显存,且专用显存与共享显存之和需大于20G。二、环境搭建步骤1.设置文件存储路径非系统盘存储:建议将非安装版的环境文件均存放在非系统盘(如E盘...
- 使用scikit-learn为PyTorch 模型进行超参数网格搜索
-
scikit-learn是Python中最好的机器学习库,而PyTorch又为我们构建模型提供了方便的操作,能否将它们的优点整合起来呢?在本文中,我们将介绍如何使用scikit-learn中的网格搜...
- 如何Keras自动编码器给极端罕见事件分类
-
全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...
- 一周热门
- 最近发表
-
- Python Qt GUI设计:将UI文件转换Python文件三种妙招(基础篇—2)
- Connect 2.0来了,还有Nuke和Maya新集成
- Magicgui:不会GUI编程也能轻松构建Python GUI应用
- Python入坑系列:桌面GUI开发之Pyside6
- Python入坑系列-一起认识Pyside6 designer可拖拽桌面GUI
- pyside2的基础界面(pyside2显示图片)
- Python GUI开发:打包PySide2应用(python 打包pyc)
- 使用PySide2做窗体,到底是怎么个事?看这个能不能搞懂
- pycharm中conda解释器无法配置(pycharm安装的解释器不能用)
- Conda使用指南:从基础操作到Llama-Factory大模型微调环境搭建
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)