利用机器学习,进行人体33个2D姿态检测与评估
itomcoil 2025-04-27 14:17 23 浏览
前几期的文章,我们分享了人脸468点检测与人手28点检测的代码实现过程,本期我们进行人体姿态的检测与评估
通过视频进行人体姿势估计在各种应用中起着至关重要的作用,例如量化体育锻炼,手语识别和全身手势控制,还可以在增强现实中将数字内容和信息覆盖在物理世界之上。
MediaPipe Pose是用于高保真人体姿势跟踪的ML解决方案,利用BlazePose研究成果,还从ML Kit Pose Detection API中获得了RGB视频帧的整个33个2D标志(或25个上身标志)。当前最先进的方法主要依靠强大的桌面环境进行推理,而MediaPipe Pose的方法可在大多数现代手机,,甚至是Web上实现实时性能。
ML管道
该解决方案利用两步检测器-跟踪器ML管线,管道首先使用检测器在帧内定位人/姿势感兴趣区域(ROI)。跟踪器随后使用ROI裁剪帧作为输入来预测ROI中的姿势界标。请注意,对于视频用例,仅在需要时(即,对于第一帧)以及当跟踪器无法再识别前一帧中的人体姿势时,才调用检测器。对于其他帧,管道仅从前一帧的姿势界标中得出ROI。
人/姿势检测模型(BlazePose检测器)
该检测器的灵感来自于轻型模型,该模型用于,作为器的代理。它明确预测了另外两个虚拟关键点,这些关键点将人体的中心,旋转和缩放牢牢地描述为一个圆圈。,我们预测了人的臀部的中点,外接整个人的圆的半径以及连接肩部和臀部中点的直线的倾斜角度。
姿势地标模型(BlazePose跟踪器)
管道的姿态估计组件预测所有33个人关键点的位置,每个关键点具有三个自由度(x,y位置和可见性)以及上述两个虚拟对齐关键点。与当前采用计算密集型预测的方法不同,我们的模型使用回归方法,该方法由所有关键点的组合热图/偏移量预测进行监督,如下所示。
MediaPipe Pose中的地标模型有两个版本:可以预测33个姿势地标位置的全身模型(请参见下图),以及仅预测前25个姿势的上身模型。后者可能比前25个更为准确。前者主要用于下半身不可见的场景。
python代码实现人体姿态检测
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=1)
drawing_spec1 = mp_drawing.DrawingSpec(thickness=2, circle_radius=1,color=(255,255,255))
这里我们跟人脸468点检测与人手28点检测类似,首先我们需要建立一个人体姿态评估器mp_pose = mp.solutions.pose
然后建立一个mp_drawing.DrawingSpec画图器,这个是设置画图的颜色,大小以及线的粗细参数,可以参考往期的人脸468点检测与人手28点检测中的关于此函数的介绍
pose = mp_pose.Pose(
static_image_mode=True, min_detection_confidence=0.5)
file = 'images/4.jpg'
image = cv2.imread(file)
image_hight, image_width, _ = image.shape
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
然后我们使用mp_pose.Pose函数设置检测的参数,其主要参数如下:
查看了原始代码,此函数没有设置多人的参数,不知道为何(官方有待改进),这个需要官方进行改进一下
STATIC_IMAGE_MODE
如果设置为false,则解决方案会将输入图像视为视频流。它将尝试在最开始的图像中检测出最杰出的人物,并在成功检测后进一步定位姿势地标。然后,在随后的图像中,它就减少了计算量和等待时间,而无需调用另一次检测就一直跟踪那些界标,直到失去跟踪为止。如果设置为true,人员检测将运行每个输入图像,非常适合处理一批静态的,可能不相关的图像。默认为false。
UPPER_BODY_ONLY
如果设置为true,则解决方案仅输出25个上身姿势界标。否则,它将输出33个姿势地标的完整集合。请注意,对于大多数下半身看不见的用例,仅上半身的预测可能更准确。默认为false。
SMOOTH_LANDMARKS
如果设置为true,则解决方案过滤器会在不同的输入图像上摆出界标以减少抖动,但是如果将static_image_mode也设置为true,则将其忽略。默认为true。
MIN_DETECTION_CONFIDENCE
[0.0, 1.0]来自人员检测模型的最小置信度值()被认为是成功的检测。默认为0.5。
MIN_TRACKING_CONFIDENCE
[0.0, 1.0]来自地标跟踪模型的姿势地标的最小置信度值()将被视为已成功跟踪,否则将在下一个输入图像上自动调用人的检测。将其设置为更高的值可以提高解决方案的健壮性,但代价是更高的延迟。如果是true,则忽略位置,其中人检测仅在每个图像上运行。默认为0.5。
POSE_LANDMARKS
姿势地标列表。每个标记包括以下内容:
· x和y:[0.0, 1.0]分别由图像宽度和高度归一化为的地标坐标。
· z:应该丢弃,因为当前尚未对模型进行充分的训练来预测深度,但这是路线图上的事情。
· visibility:一个值,用于[0.0, 1.0]指示界标在图像中可见(存在且未被遮挡)的可能性。
设置完成后,我们读取一张需要检测的照片,这里设置static_image_mode=True来检测图片,然后转换图片到RGB 颜色空间,使用pose.process函数检测图片的人体姿态,其结果保存在results中
print(
f'Nose coordinates: ('
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].x * image_width}, '
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].y * image_hight})'
)
# Draw pose landmarks on the image.
annotated_image = image.copy()
mp_drawing.draw_landmarks(
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,landmark_drawing_spec=drawing_spec,
connection_drawing_spec=drawing_spec1)
cv2.imshow('annotated_image',annotated_image)
cv2.waitKey(0)
cv2.imwrite('images/pose11.png', annotated_image)
pose.close()
这里由于pose检测器默认只检测一个人,所以这里不再需要for循环来遍历检测的结果(关于多人的检测我们后期使用OpenCV来实现)
我们直接打印results中的坐标结果,并使用mp_drawing.draw_landmarks函数把检测到的坐标进行连线,最后进行检测结果的保存以便后期分析查看。
Python代码实现实时视频人体姿态检测
import cv2
import mediapipe as mp
import time
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=1)
drawing_spec1 = mp_drawing.DrawingSpec(thickness=2, circle_radius=1,color=(255,255,255))
pose = mp_pose.Pose(
min_detection_confidence=0.5, min_tracking_confidence=0.5)
这里跟图片检测一致,我们使用mp.solutions.pose函数建立一个pose检测器,并进行pose参数的设置,这里由于是需要检测视频,static_image_mode参数默认为false,然后使用mp_drawing.DrawingSpec建立画图设置。
cap = cv2.VideoCapture(0)
time.sleep(2)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
cv2.imshow('MediaPipe Pose', image)
if cv2.waitKey(5) & 0xFF == ord('q'):
break
pose.close()
cap.release()
我们打开系统的默认摄像头,待摄像头打开后,我们使用一个死循环进行视频帧图片的截取,当截取到视频帧中的图片后,我们利用图片检测的方法进行检测,只是这里我们转换图片到RGB颜色空间后,我们使用cv.flip函数来进行图片的翻转操作,以便增强图片数据,然后使用 image.flags.writeable = False
标签标注图片不允许被修改,然后进行图片的人体姿态检测,检测完成后,由于我们需要对图片进行画图,这里重新设置image.flags.writeable = True标签,允许修改图片,最后利用mp_drawing.draw_landmarks函数对图片进行检测点的画图操作,最后实时显示到屏幕上,这样我们就可以看到完整的视频检测的结果了。
当然是用姿态评估,我们可以开发属于自己的应用,比如电视上添加摄像头,实时检测看电视人的姿态,评估是否姿态健康,以及学生上课的姿态,写字姿态等,还可以利用姿态评估对全身运动类的体育进行判断等等
对于人手以及姿态检测,我们后期使用OpenCV的方式进行代码的开发,毕竟我们需要进行多人的姿态评估
相关推荐
- 最强聚类模型,层次聚类 !!_层次聚类的优缺点
-
哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...
- python决策树用于分类和回归问题实际应用案例
-
决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...
- Python教程(四十五):推荐系统-个性化推荐算法
-
今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...
- 简单学Python——NumPy库7——排序和去重
-
NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...
- PyTorch实战:TorchVision目标检测模型微调完
-
PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...
- C4.5算法解释_简述c4.5算法的基本思想
-
C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...
- Python中的数据聚类及可视化分析实践
-
探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...
- 用Python来统计大乐透号码的概率分布
-
用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...
- python:支持向量机监督学习算法用于二分类和多分类问题示例
-
监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...
- 25个例子学会Pandas Groupby 操作
-
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...
- 数据挖掘流程_数据挖掘流程主要有哪些步骤
-
数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...
- 使用Python寻找图像最常见的颜色_python 以图找图
-
如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...
- 财务预算分析全网最佳实践:从每月分析到每天分析
-
原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...
- 常用数据工具去重方法_数据去重公式
-
在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...
- Python教程(四十):PyTorch深度学习-动态计算图
-
今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)