百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

利用机器学习,进行人体33个2D姿态检测与评估

itomcoil 2025-04-27 14:17 15 浏览

前几期的文章,我们分享了人脸468点检测人手28点检测的代码实现过程,本期我们进行人体姿态的检测与评估

通过视频进行人体姿势估计在各种应用中起着至关重要的作用,例如量化体育锻炼,手语识别和全身手势控制,还可以在增强现实中将数字内容和信息覆盖在物理世界之上。

MediaPipe Pose是用于高保真人体姿势跟踪的ML解决方案,利用BlazePose研究成果,还从ML Kit Pose Detection API中获得了RGB视频帧的整个33个2D标志(或25个上身标志)。当前最先进的方法主要依靠强大的桌面环境进行推理,而MediaPipe Pose的方法可在大多数现代手机,,甚至是Web上实现实时性能。

ML管道

该解决方案利用两步检测器-跟踪器ML管线,管道首先使用检测器在帧内定位人/姿势感兴趣区域(ROI)。跟踪器随后使用ROI裁剪帧作为输入来预测ROI中的姿势界标。请注意,对于视频用例,仅在需要时(即,对于第一帧)以及当跟踪器无法再识别前一帧中的人体姿势时,才调用检测器。对于其他帧,管道仅从前一帧的姿势界标中得出ROI。

人/姿势检测模型(BlazePose检测器)

该检测器的灵感来自于轻型模型,模型用于,作为器的代理。它明确预测了另外两个虚拟关键点,这些关键点将人体的中心,旋转和缩放牢牢地描述为一个圆圈。,我们预测了人的臀部的中点,外接整个人的圆的半径以及连接肩部和臀部中点的直线的倾斜角度。

姿势地标模型(BlazePose跟踪器)

管道的姿态估计组件预测所有33个人关键点的位置,每个关键点具有三个自由度(x,y位置和可见性)以及上述两个虚拟对齐关键点。与当前采用计算密集型预测的方法不同,我们的模型使用回归方法,该方法由所有关键点的组合热图/偏移量预测进行监督,如下所示。

MediaPipe Pose中的地标模型有两个版本:可以预测33个姿势地标位置的全身模型(请参见下图),以及仅预测前25个姿势的上身模型。后者可能比前25个更为准确。前者主要用于下半身不可见的场景。

python代码实现人体姿态检测

import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=1)
drawing_spec1 = mp_drawing.DrawingSpec(thickness=2, circle_radius=1,color=(255,255,255))

这里我们跟人脸468点检测与人手28点检测类似,首先我们需要建立一个人体姿态评估器mp_pose = mp.solutions.pose

然后建立一个mp_drawing.DrawingSpec画图器,这个是设置画图的颜色,大小以及线的粗细参数,可以参考往期的人脸468点检测与人手28点检测中的关于此函数的介绍

pose = mp_pose.Pose(
static_image_mode=True, min_detection_confidence=0.5)
file = 'images/4.jpg'
image = cv2.imread(file)
image_hight, image_width, _ = image.shape
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

然后我们使用mp_pose.Pose函数设置检测的参数,其主要参数如下:

查看了原始代码,此函数没有设置多人的参数,不知道为何(官方有待改进),这个需要官方进行改进一下

STATIC_IMAGE_MODE

如果设置为false,则解决方案会将输入图像视为视频流。它将尝试在最开始的图像中检测出最杰出的人物,并在成功检测后进一步定位姿势地标。然后,在随后的图像中,它就减少了计算量和等待时间,而无需调用另一次检测就一直跟踪那些界标,直到失去跟踪为止。如果设置为true,人员检测将运行每个输入图像,非常适合处理一批静态的,可能不相关的图像。默认为false。

UPPER_BODY_ONLY

如果设置为true,则解决方案仅输出25个上身姿势界标。否则,它将输出33个姿势地标的完整集合。请注意,对于大多数下半身看不见的用例,仅上半身的预测可能更准确。默认为false。

SMOOTH_LANDMARKS

如果设置为true,则解决方案过滤器会在不同的输入图像上摆出界标以减少抖动,但是如果将static_image_mode也设置为true,则将其忽略。默认为true。

MIN_DETECTION_CONFIDENCE

[0.0, 1.0]来自人员检测模型的最小置信度值()被认为是成功的检测。默认为0.5。

MIN_TRACKING_CONFIDENCE

[0.0, 1.0]来自地标跟踪模型的姿势地标的最小置信度值()将被视为已成功跟踪,否则将在下一个输入图像上自动调用人的检测。将其设置为更高的值可以提高解决方案的健壮性,但代价是更高的延迟。如果是true,则忽略位置,其中人检测仅在每个图像上运行。默认为0.5。

POSE_LANDMARKS

姿势地标列表。每个标记包括以下内容:

· x和y:[0.0, 1.0]分别由图像宽度和高度归一化为的地标坐标。

· z:应该丢弃,因为当前尚未对模型进行充分的训练来预测深度,但这是路线图上的事情。

· visibility:一个值,用于[0.0, 1.0]指示界标在图像中可见(存在且未被遮挡)的可能性。

设置完成后,我们读取一张需要检测的照片,这里设置static_image_mode=True来检测图片,然后转换图片到RGB 颜色空间,使用pose.process函数检测图片的人体姿态,其结果保存在results中

print(
f'Nose coordinates: ('
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].x * image_width}, '
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].y * image_hight})'
)
# Draw pose landmarks on the image.
annotated_image = image.copy()
mp_drawing.draw_landmarks(
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,landmark_drawing_spec=drawing_spec,
connection_drawing_spec=drawing_spec1)

cv2.imshow('annotated_image',annotated_image)
cv2.waitKey(0)
cv2.imwrite('images/pose11.png', annotated_image)
pose.close()

这里由于pose检测器默认只检测一个人,所以这里不再需要for循环来遍历检测的结果(关于多人的检测我们后期使用OpenCV来实现)

我们直接打印results中的坐标结果,并使用mp_drawing.draw_landmarks函数把检测到的坐标进行连线,最后进行检测结果的保存以便后期分析查看。

Python代码实现实时视频人体姿态检测

import cv2
import mediapipe as mp
import time
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=1)
drawing_spec1 = mp_drawing.DrawingSpec(thickness=2, circle_radius=1,color=(255,255,255))
pose = mp_pose.Pose(
min_detection_confidence=0.5, min_tracking_confidence=0.5)

这里跟图片检测一致,我们使用mp.solutions.pose函数建立一个pose检测器,并进行pose参数的设置,这里由于是需要检测视频,static_image_mode参数默认为false,然后使用mp_drawing.DrawingSpec建立画图设置。

cap = cv2.VideoCapture(0)
time.sleep(2)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
cv2.imshow('MediaPipe Pose', image)
if cv2.waitKey(5) & 0xFF == ord('q'):
break
pose.close()
cap.release()

我们打开系统的默认摄像头,待摄像头打开后,我们使用一个死循环进行视频帧图片的截取,当截取到视频帧中的图片后,我们利用图片检测的方法进行检测,只是这里我们转换图片到RGB颜色空间后,我们使用cv.flip函数来进行图片的翻转操作,以便增强图片数据,然后使用 image.flags.writeable = False

标签标注图片不允许被修改,然后进行图片的人体姿态检测,检测完成后,由于我们需要对图片进行画图,这里重新设置image.flags.writeable = True标签,允许修改图片,最后利用mp_drawing.draw_landmarks函数对图片进行检测点的画图操作,最后实时显示到屏幕上,这样我们就可以看到完整的视频检测的结果了。

当然是用姿态评估,我们可以开发属于自己的应用,比如电视上添加摄像头,实时检测看电视人的姿态,评估是否姿态健康,以及学生上课的姿态,写字姿态等,还可以利用姿态评估对全身运动类的体育进行判断等等

对于人手以及姿态检测,我们后期使用OpenCV的方式进行代码的开发,毕竟我们需要进行多人的姿态评估

相关推荐

Python 类型注解的进阶应用:从静态检查到元编程

阅读文章前辛苦您点下“关注”,方便讨论和分享,为了回馈您的支持,我将每日更新优质内容。如需转载请附上本文源链接!近年来,Python类型注解(TypeHinting)逐渐从一个可选的功能演变为大型...

高阶Python|返回类型提示技巧 (1)

引言Python提供了一种可选的特性——类型提示,它有助于提高代码的可读性、可推理性和可调试性。通过类型提示,开发者能够清楚地了解变量、函数参数和返回值应具备的数据类型。在开发那些需要高度灵活性的应用...

跟我一起学Python-函数的定义(基础)

一.函数的定义和调用1.语法:def函数名():函数封装的代码函数最好能够表达函数内部封装的代码功能,方便后续的调用,函数命名需要遵循规则字母、数字、下划线、不能以数字开头,不能使用系统关键字。&#...

Python函数参数和返回值类型:让你的代码更清晰、更健壮

在Python开发中,你是否遇到过这些抓狂时刻?同事写的函数参数类型全靠猜调试两小时发现传了字符串给数值计算函数重构代码时不知道函数返回的是列表还是字典今天教你两招,彻底解决类型混乱问题!让你的...

python入门到脱坑 函数—参数(python 参数处理)

本文包括必须参数,关键参数,默认参数以及可变参数Python函数参数详解一、位置参数(必需参数)位置参数是函数调用时必须提供的参数,且顺序必须与定义时一致。基本用法defgreet(name,me...

python入门到脱坑经典案例—求两个数的和

下面为大家讲解如何求两个数之和——这是编程中最基础但最重要的算术运算之一。我们会从最简单的情况逐步深入,并穿插相关编程概念。1.最基础版本#定义两个变量num1=5num2=3#...

新手必看!30 个 Python 核心函数详解,手把手教你玩转编程

Python中30个核心函数及其含义、代码示例、注释和应用场景:print():用于输出文本或变量的值到控制台。message="Hello,World!"#定义一个...

Python快速入门教程1:基本语法、数据类型、运算符、数字字符串

Python3的基础教程,涵盖了基本语法、数据类型、类型转换、解释器、注释、运算符、数字和字符串等内容,并附有使用实例场景。Python3的基础教程,涵盖了基本语法、数据类型、类型转换、解释器、注释、...

编程小白学做题:Python 的经典编程题及详解,附代码和注释(八)

适合Python3+的6道编程练习题(附详解)1找出字典中值最小的键题目描述:找出字典中值最小的键(如{"a":5,"b":2,"c...

新手学Python避坑,学习效率狂飙! 二十一、print()函数

感谢大家对《新手学Python避坑,学习效率狂飙!》系列的点赞、关注和收藏,今天这编是这个系列的第二十一个分享,前面还有二十个,大家可以关注下之前发布的文章。下面是我们今天第三个的分享:在Pytho...

编程小白学做题:Python 的经典编程题及详解,附代码和注释(六)

适合Python3+的6道编程练习题(附详解)1、打印杨辉三角的前n行题目描述:给定正整数n,打印杨辉三角的前n行(每个数等于它上方两数之和,每行首尾为1)。编写思路:杨辉三角的第i...

让你的Python代码更易读:7个提升函数可读性的实用技巧

如果你正在阅读这篇文章,很可能你已经用Python编程有一段时间了。今天,让我们聊聊可以提升你编程水平的一件事:编写易读的函数。请想一想:我们花在阅读代码上的时间大约是写代码的10倍。所以,每当你创建...

python入门到脱坑 函数—return语句

Python函数中的return语句详解一、return语句基础1.1基本功能return语句用于从函数中返回一个值,并立即结束函数的执行。defadd(a,b):returna+...

编程小白学做题:Python 的经典编程题及详解,附代码和注释(七)

适合Python3+的6道编程练习题(附详解)1.检查字符串是否以指定子串开头题目描述:判断字符串是否以给定子串开头(如"helloworld"以"hello&...

python的注释符是什么(python的合法注释符号是什么)

python的注释符是什么?python的注释符包括单行注释符和多行注释符。一、python单行注释符号(#)井号(#)常被用作单行注释符号,在代码中使用#时,它右边的任何数据都会被忽略,当做是注释。...