利用机器学习,进行人体33个2D姿态检测与评估
itomcoil 2025-04-27 14:17 9 浏览
前几期的文章,我们分享了人脸468点检测与人手28点检测的代码实现过程,本期我们进行人体姿态的检测与评估
通过视频进行人体姿势估计在各种应用中起着至关重要的作用,例如量化体育锻炼,手语识别和全身手势控制,还可以在增强现实中将数字内容和信息覆盖在物理世界之上。
MediaPipe Pose是用于高保真人体姿势跟踪的ML解决方案,利用BlazePose研究成果,还从ML Kit Pose Detection API中获得了RGB视频帧的整个33个2D标志(或25个上身标志)。当前最先进的方法主要依靠强大的桌面环境进行推理,而MediaPipe Pose的方法可在大多数现代手机,,甚至是Web上实现实时性能。
ML管道
该解决方案利用两步检测器-跟踪器ML管线,管道首先使用检测器在帧内定位人/姿势感兴趣区域(ROI)。跟踪器随后使用ROI裁剪帧作为输入来预测ROI中的姿势界标。请注意,对于视频用例,仅在需要时(即,对于第一帧)以及当跟踪器无法再识别前一帧中的人体姿势时,才调用检测器。对于其他帧,管道仅从前一帧的姿势界标中得出ROI。
人/姿势检测模型(BlazePose检测器)
该检测器的灵感来自于轻型模型,该模型用于,作为器的代理。它明确预测了另外两个虚拟关键点,这些关键点将人体的中心,旋转和缩放牢牢地描述为一个圆圈。,我们预测了人的臀部的中点,外接整个人的圆的半径以及连接肩部和臀部中点的直线的倾斜角度。
姿势地标模型(BlazePose跟踪器)
管道的姿态估计组件预测所有33个人关键点的位置,每个关键点具有三个自由度(x,y位置和可见性)以及上述两个虚拟对齐关键点。与当前采用计算密集型预测的方法不同,我们的模型使用回归方法,该方法由所有关键点的组合热图/偏移量预测进行监督,如下所示。
MediaPipe Pose中的地标模型有两个版本:可以预测33个姿势地标位置的全身模型(请参见下图),以及仅预测前25个姿势的上身模型。后者可能比前25个更为准确。前者主要用于下半身不可见的场景。
python代码实现人体姿态检测
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=1)
drawing_spec1 = mp_drawing.DrawingSpec(thickness=2, circle_radius=1,color=(255,255,255))
这里我们跟人脸468点检测与人手28点检测类似,首先我们需要建立一个人体姿态评估器mp_pose = mp.solutions.pose
然后建立一个mp_drawing.DrawingSpec画图器,这个是设置画图的颜色,大小以及线的粗细参数,可以参考往期的人脸468点检测与人手28点检测中的关于此函数的介绍
pose = mp_pose.Pose(
static_image_mode=True, min_detection_confidence=0.5)
file = 'images/4.jpg'
image = cv2.imread(file)
image_hight, image_width, _ = image.shape
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
然后我们使用mp_pose.Pose函数设置检测的参数,其主要参数如下:
查看了原始代码,此函数没有设置多人的参数,不知道为何(官方有待改进),这个需要官方进行改进一下
STATIC_IMAGE_MODE
如果设置为false,则解决方案会将输入图像视为视频流。它将尝试在最开始的图像中检测出最杰出的人物,并在成功检测后进一步定位姿势地标。然后,在随后的图像中,它就减少了计算量和等待时间,而无需调用另一次检测就一直跟踪那些界标,直到失去跟踪为止。如果设置为true,人员检测将运行每个输入图像,非常适合处理一批静态的,可能不相关的图像。默认为false。
UPPER_BODY_ONLY
如果设置为true,则解决方案仅输出25个上身姿势界标。否则,它将输出33个姿势地标的完整集合。请注意,对于大多数下半身看不见的用例,仅上半身的预测可能更准确。默认为false。
SMOOTH_LANDMARKS
如果设置为true,则解决方案过滤器会在不同的输入图像上摆出界标以减少抖动,但是如果将static_image_mode也设置为true,则将其忽略。默认为true。
MIN_DETECTION_CONFIDENCE
[0.0, 1.0]来自人员检测模型的最小置信度值()被认为是成功的检测。默认为0.5。
MIN_TRACKING_CONFIDENCE
[0.0, 1.0]来自地标跟踪模型的姿势地标的最小置信度值()将被视为已成功跟踪,否则将在下一个输入图像上自动调用人的检测。将其设置为更高的值可以提高解决方案的健壮性,但代价是更高的延迟。如果是true,则忽略位置,其中人检测仅在每个图像上运行。默认为0.5。
POSE_LANDMARKS
姿势地标列表。每个标记包括以下内容:
· x和y:[0.0, 1.0]分别由图像宽度和高度归一化为的地标坐标。
· z:应该丢弃,因为当前尚未对模型进行充分的训练来预测深度,但这是路线图上的事情。
· visibility:一个值,用于[0.0, 1.0]指示界标在图像中可见(存在且未被遮挡)的可能性。
设置完成后,我们读取一张需要检测的照片,这里设置static_image_mode=True来检测图片,然后转换图片到RGB 颜色空间,使用pose.process函数检测图片的人体姿态,其结果保存在results中
print(
f'Nose coordinates: ('
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].x * image_width}, '
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].y * image_hight})'
)
# Draw pose landmarks on the image.
annotated_image = image.copy()
mp_drawing.draw_landmarks(
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,landmark_drawing_spec=drawing_spec,
connection_drawing_spec=drawing_spec1)
cv2.imshow('annotated_image',annotated_image)
cv2.waitKey(0)
cv2.imwrite('images/pose11.png', annotated_image)
pose.close()
这里由于pose检测器默认只检测一个人,所以这里不再需要for循环来遍历检测的结果(关于多人的检测我们后期使用OpenCV来实现)
我们直接打印results中的坐标结果,并使用mp_drawing.draw_landmarks函数把检测到的坐标进行连线,最后进行检测结果的保存以便后期分析查看。
Python代码实现实时视频人体姿态检测
import cv2
import mediapipe as mp
import time
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
drawing_spec = mp_drawing.DrawingSpec(thickness=2, circle_radius=1)
drawing_spec1 = mp_drawing.DrawingSpec(thickness=2, circle_radius=1,color=(255,255,255))
pose = mp_pose.Pose(
min_detection_confidence=0.5, min_tracking_confidence=0.5)
这里跟图片检测一致,我们使用mp.solutions.pose函数建立一个pose检测器,并进行pose参数的设置,这里由于是需要检测视频,static_image_mode参数默认为false,然后使用mp_drawing.DrawingSpec建立画图设置。
cap = cv2.VideoCapture(0)
time.sleep(2)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
cv2.imshow('MediaPipe Pose', image)
if cv2.waitKey(5) & 0xFF == ord('q'):
break
pose.close()
cap.release()
我们打开系统的默认摄像头,待摄像头打开后,我们使用一个死循环进行视频帧图片的截取,当截取到视频帧中的图片后,我们利用图片检测的方法进行检测,只是这里我们转换图片到RGB颜色空间后,我们使用cv.flip函数来进行图片的翻转操作,以便增强图片数据,然后使用 image.flags.writeable = False
标签标注图片不允许被修改,然后进行图片的人体姿态检测,检测完成后,由于我们需要对图片进行画图,这里重新设置image.flags.writeable = True标签,允许修改图片,最后利用mp_drawing.draw_landmarks函数对图片进行检测点的画图操作,最后实时显示到屏幕上,这样我们就可以看到完整的视频检测的结果了。
当然是用姿态评估,我们可以开发属于自己的应用,比如电视上添加摄像头,实时检测看电视人的姿态,评估是否姿态健康,以及学生上课的姿态,写字姿态等,还可以利用姿态评估对全身运动类的体育进行判断等等
对于人手以及姿态检测,我们后期使用OpenCV的方式进行代码的开发,毕竟我们需要进行多人的姿态评估
相关推荐
- Excel新函数TEXTSPLIT太强大了,轻松搞定数据拆分!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!最近我把WPS软件升级到了版本号:12.1.0.15990的最新版本,最版本已经支持文本拆分函数TEXTSPLIT了,并...
- Excel超强数据拆分函数TEXTSPLIT,从入门到精通!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!今天跟大家分享的是Excel超强数据拆分函数TEXTSPLIT,带你从入门到精通!TEXTSPLIT函数真是太强大了,轻松...
- 看完就会用的C++17特性总结(c++11常用新特性)
-
作者:taoklin,腾讯WXG后台开发一、简单特性1.namespace嵌套C++17使我们可以更加简洁使用命名空间:2.std::variant升级版的C语言Union在C++17之前,通...
- plsql字符串分割浅谈(plsql字符集设置)
-
工作之中遇到的小问题,在此抛出问题,并给出解决方法。一方面是为了给自己留下深刻印象,另一方面给遇到相似问题的同学一个解决思路。如若其中有写的不好或者不对的地方也请不加不吝赐教,集思广益,共同进步。遇到...
- javascript如何分割字符串(javascript切割字符串)
-
javascript如何分割字符串在JavaScript中,您可以使用字符串的`split()`方法来将一个字符串分割成一个数组。`split()`方法接收一个参数,这个参数指定了分割字符串的方式。如...
- TextSplit函数的使用方法(入门+进阶+高级共八种用法10个公式)
-
在Excel和WPS新增的几十个函数中,如果按实用性+功能性排名,textsplit排第二,无函数敢排第一。因为它不仅使用简单,而且解决了以前用超复杂公式才能搞定的难题。今天小编用10个公式,让你彻底...
- Python字符串split()方法使用技巧
-
在Python中,字符串操作可谓是基础且关键的技能,而今天咱们要重点攻克的“堡垒”——split()方法,它能将看似浑然一体的字符串,按照我们的需求进行拆分,极大地便利了数据处理与文本解析工作。基本语...
- go语言中字符串常用的系统函数(golang 字符串)
-
最近由于工作比较忙,视频有段时间没有更新了,在这里跟大家说声抱歉了,我尽快抽些时间整理下视频今天就发一篇关于go语言的基础知识吧!我这我工作中用到的一些常用函数,汇总出来分享给大家,希望对...
- 无规律文本拆分,这些函数你得会(没有分隔符没规律数据拆分)
-
今天文章来源于表格学员训练营群内答疑,混合文本拆分。其实拆分不难,只要规则明确就好办。就怕规则不清晰,或者规则太多。那真是,Oh,mygod.如上图所示进行拆分,文字表达实在是有点难,所以小熊变身灵...
- Python之文本解析:字符串格式化的逆操作?
-
引言前面的文章中,提到了关于Python中字符串中的相关操作,更多地涉及到了字符串的格式化,有些地方也称为字符串插值操作,本质上,就是把多个字符串拼接在一起,以固定的格式呈现。关于字符串的操作,其实还...
- 忘记【分列】吧,TEXTSPLIT拆分文本好用100倍
-
函数TEXTSPLIT的作用是:按分隔符将字符串拆分为行或列。仅ExcelM365版本可用。基本应用将A2单元格内容按逗号拆分。=TEXTSPLIT(A2,",")第二参数设置为逗号...
- Excel365版本新函数TEXTSPLIT,专攻文本拆分
-
Excel中字符串的处理,拆分和合并是比较常见的需求。合并,当前最好用的函数非TEXTJOIN不可。拆分,Office365于2022年3月更新了一个专业函数:TEXTSPLIT语法参数:【...
- 站长在线Python精讲使用正则表达式的split()方法分割字符串详解
-
欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中使用正则表达式的split()方法分割字符串详解》。使用正则表达式分割字符串在Python中使用正则表达式的split(...
- Java中字符串分割的方法(java字符串切割方法)
-
技术背景在Java编程中,经常需要对字符串进行分割操作,例如将一个包含多个信息的字符串按照特定的分隔符拆分成多个子字符串。常见的应用场景包括解析CSV文件、处理网络请求参数等。实现步骤1.使用Str...
- 因为一个函数strtok踩坑,我被老工程师无情嘲笑了
-
在用C/C++实现字符串切割中,strtok函数经常用到,其主要作用是按照给定的字符集分隔字符串,并返回各子字符串。但是实际上,可不止有strtok(),还有strtok、strtok_s、strto...
- 一周热门
- 最近发表
- 标签列表
-
- ps像素和厘米换算 (32)
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)