[深度学习] ncnn安装和调用基础教程
itomcoil 2025-05-08 01:57 4 浏览
1 介绍
ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第三方依赖,跨平台,但是通常都需要protobuf和opencv。ncnn目前已在腾讯多款应用中使用,如 QQ,Qzone,微信,天天P图等。ncnn主要基于C++和caffe,ncnn项目地址见:
https://github.com/Tencent/ncnn
本文主要介绍ncnn在Ubuntu 18和Windows10下安装和使用。ncnn实测win10和Ubuntu18下C++调用squeezenet进行分类越比opencv dnn模块调用squeeznet快3到5倍。
ncnn常见的主流系统平台和常见硬件平台都支持,包括树莓派。
其他平台安装教程见:
https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-windows-x64-using-visual-studio-community-2017
2 Ubuntu 18下ncnn安装和使用
2.1 Ubuntu 18下ncnn编译安装
ncnn在linux平台需要protobuf和较低的gcc版本支持(根据评论区baiyu33的回复,最新ncnn版本在gcc/g++ 7.5环境,不需要降级为4.8.5,就可以编译安装protobuf 2.6.1和ncnn,2020年7月7日更新),如果你的系统可以运行caffe,可以跳过第一第二步,直接第三步。第一第二步具体安装protobuf见:
(1)将gcc、g++降级为4.8.5版本(最新版本ncnn可以跳过该阶段)。
(2)安装protobuf
(3)编译源码
先下载源码
git clone https://github.com/Tencent/ncnn
然后进入ncnn安装即可
cd ncnn
mkdir build
cd build
cmake ..
make –j12
make install
2.2 Ubuntu 18下ncnn使用
(1) 模型更新
ncnn对caffe模型支持度比其他平台模型支持度更高。所以一般都是将caffe的模型转为ncnn格式。对于比较老的caffe模型需要将其转换为最新的caffe模型(相对来说),不过一般都不需要。以alexnet为例
alexnet 的 deploy.prototxt 可以在这里下载:
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
alexnet 的 caffemodel 可以在这里下载 :
http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel
caffe自带了工具可以把老版本的caffe 网络和模型转换为新版(ncnn的工具只认识新版),转换方法为将你需要转换的prototxt和caffemodel放在你电脑的caffe/build/tools目录下,然后终端进入caffe/build/tools,执行命令:.
./upgrade_net_proto_text old_deploy.prototxt new_deploy.prototxt
./upgrade_net_proto_binary old.caffemodel new.caffemodel
执行完成之后你就可以在caffe/build/tools下找到你的new_deploy.prototxt和new.caffemodel文件了。注意完成之后打开你的new_deploy.prototxt文件看一下,因为一般每次只需要做一个数据样本的识别,所以如果第一个 dim 不为1,要将其设为
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 227 dim: 227 } }
}
(2)模型转换
模型转换具体使用见:
new.caffemodel文件后,需要将prototxt转换为ncnn支持的param文件,caffemodel转换为bin文件。Ncnn中使用 caffe2ncnn 工具转换为ncnn的网络描述和模型。将上面转化的new_deploy.prototxt和new.caffemodel放到ncnn/build/tools/caffe下。然后命令行输入以下命令:
./caffe2ncnn new_deploy.prototxt new.caffemodel ncnn.param ncnn.bin
或者在以下网站转换模型:
https://convertmodel.com/?tdsourcetag=s_pcqq_aiomsg
(3)运用模型分类
上面提到的是alexnet,在实际本文使用的是squeezenet。ncnn调用模型的一般过程都是参考ncnn/examples/下各个示例cpp文件,选择自己的模型,然后根据该目录下的CMakeLists.txt文件修改参数。本文就不修改参数了,直接选用squeezenet.cpp使用。
然后打开ncnn根目录下的CMakeLists.txt文件,将编译examples语句的注释打开(默认是被注释掉的),如图:
终端进入ncnn/build后执行:
make
然后把所获得ncnn参数和模型文件复制到ncnn/build/examples目录下,本文所用的squeezenet的ncnn文件在ncnn/examples中有提供。将模型.param和.bin文件复制到ncnn/build/examples目录下,然后终端cd到ncnn/build/examples,执行:
./squeezenet imagepath
Imagepath为图像路径。就可以得到结果。
具体调用代码直接参考ncnn/examples中的示例cpp文件,但是使用时最好使用examples所提到的模型。
(4)ncnn工程使用
如果想建立工程,需要自己新建一个目录然后编写你自己的cpp文件。比如使用
ncnn/examples/squeezenet.cpp,将其放入本机任意路径新的文件夹。对于ncnn编译,需要添加opencv和openmp,编写如下CMakeLists.txt进行编译,然后cmake .就可以在当前目录运行生成的可执行文件ncnnTest。
# 设置cmake版本
cmake_minimum_required(VERSION 3.2)
# ncnn工程
project(ncnnTest)
# 调用opencv
find_package(OpenCV REQUIRED)
# 调用openmp
FIND_PACKAGE( OpenMP REQUIRED)
if(OPENMP_FOUND)
message("OPENMP FOUND")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${OpenMP_EXE_LINKER_FLAGS}")
endif()
# 包含ncnn的头文件
include_directories(/home/user/ncnn/build/install/include/ncnn)
# 包含ncnn的链接文件
link_directories(/home/user/ncnn/build/install/lib)
# 生成可执行文件
add_executable(ncnnTest squeezenet.cpp)
# 链接ncnn静态链接库
target_link_libraries(ncnnTest ncnn ${OpenCV_LIBS} /home/user/ncnn/build/install/lib/libncnn.a)
3 Windows 10下ncnn安装和使用
Win10下安装和ncnn最好都基于visual studio2015以上平台,本文用的vs2017。
3.1 Windows 10下ncnn编译安装
(1)protobuf编译
Win10下需要首先编译ncnn所使用到的protobuf库。Protobuf3.4.0下载路径为:
https://github.com/google/protobuf/archive/v3.4.0.zip
然后选择vs2017自带的命令提示符工具,对于命令提示符工具选择,用于后期可能会用到opencv或者其他软件包。需要确定是x86还是x64平台,本文由于用的x64平台,选择适用于vs2017的x64本机工具。如下所示:
特别要注意的在编译文件前,一定要确定命令工具所使用的是x64还是x86。
protobuf编译步骤为:
cd <protobuf-root-dir>
mkdir build-vs2017
cd build-vs2017
cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_MSVC_STATIC_RUNTIME=OFF ../cmake
nmake
nmake install
上面protobuf-root-dir为你的protobuf文件路径,比如我的是
D:/packages/protobuf-3.4.0,文件路径最好纯英文,protobuf设置的release格式。
(2)ncnn编译
下载ncnn源码,
https://github.com/Tencent/ncnn 然后用上面提到的开发工具进入ncnn安装即可,具体步骤如下:
cd <ncnn-root-dir>
mkdir build-vs2017
cd build-vs2017
cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -DProtobuf_INCLUDE_DIR=<protobuf-root-dir>/build-vs2017/install/include -DProtobuf_LIBRARIES=<protobuf-root-dir>/build-vs2017/install/lib/libprotobuf.lib -DProtobuf_PROTOC_EXECUTABLE=<protobuf-root-dir>/build-vs2017/install/bin/protoc.exe -DNCNN_VULKAN=OFF ..
nmake
nmake install
注意<protobuf-root-dir>要替换为你的protobuf文件绝对路径,比如我的是
D:/packages/protobuf-3.4.0。DCMAKE_BUILD_TYPE=Release确定编译的是release文件。
3.2 Windows 10下ncnn使用
ncnn使用类似opencv在windows下的使用。打开vs2017建立工程文件。项目-属性-VC++目录。设置配置文件,VC++目录在包含目录下输入以下路径,调用opencv,ncnn,protobuf头文件。
d:\opencv\build\include\opencv
d:\opencv\build\include
d:\opencv\build\include\opencv2
d:\packages\ncnn\build-vs2017\install\include
d:\packages\ncnn\build-vs2017\install\include\ncnn
d:\packages\protobuf-3.4.0\build-vs2017\install\include
d:\packages\protobuf-3.4.0\build-vs2017\install\include\google
具体如图所示:
接着配置库目录,输入以下路径配置链接文件
d:\opencv\build\x64\vc15\lib
d:\packages\ncnn\build-vs2017\install\lib
d:\packages\protobuf-3.4.0\build-vs2017\install\lib
但是额外要配置配置Windows运行库目录,主要是要protobuf配置文件:
d:\packages\protobuf-3.4.0\build-vs2017\install\bin
最后链接器-输入-附加依赖项配置附加依赖项。Protobuf相关依赖项已经调用了其动态库,就不需要再调用了。
opencv_world341.lib
ncnn.lib
这样ncnn就配置好了。输入代码,直接ncnn/examples中选用一个示例调用cpp就行了。但是只能在release x64下调用ncnn,具体编译ncnn时所选择的编译模式。比如squeezenet.cpp,直接复制过来,设置param和bin文件路径就行了。其他模型依葫芦画瓢。
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
// linux平台调用
// #include "platform.h"
// #include "net.h"
// windows平台调用
#include <net.h>
#include <platform.h>
#if NCNN_VULKAN
#include "gpu.h"
#endif // NCNN_VULKAN
static int detect_squeezenet(const cv::Mat& bgr, std::vector<float>& cls_scores)
{
ncnn::Net squeezenet;
#if NCNN_VULKAN
squeezenet.opt.use_vulkan_compute = true;
#endif // NCNN_VULKAN
// squeezenet的ncnn模型文件路径
squeezenet.load_param("squeezenet_v1.1.param");
squeezenet.load_model("squeezenet_v1.1.bin");
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, 227, 227);
const float mean_vals[3] = {104.f, 117.f, 123.f};
in.substract_mean_normalize(mean_vals, 0);
ncnn::Extractor ex = squeezenet.create_extractor();
ex.input("data", in);
ncnn::Mat out;
ex.extract("prob", out);
cls_scores.resize(out.w);
for (int j=0; j<out.w; j++)
{
cls_scores[j] = out[j];
}
return 0;
}
static int print_topk(const std::vector<float>& cls_scores, int topk)
{
// partial sort topk with index
int size = cls_scores.size();
std::vector< std::pair<float, int> > vec;
vec.resize(size);
for (int i=0; i<size; i++)
{
vec[i] = std::make_pair(cls_scores[i], i);
}
std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(),
std::greater< std::pair<float, int> >());
// print topk and score
for (int i=0; i<topk; i++)
{
float score = vec[i].first;
int index = vec[i].second;
fprintf(stderr, "%d = %f\n", index, score);
}
return 0;
}
int main()
{
String imagepath = "./image/cat.jpg";
cv::Mat m = cv::imread(imagepath);
if (m.empty())
{
fprintf(stderr, "cv::imread %s failed\n", imagepath);
return -1;
}
#if NCNN_VULKAN
ncnn::create_gpu_instance();
#endif // NCNN_VULKAN
std::vector<float> cls_scores;
detect_squeezenet(m, cls_scores);
#if NCNN_VULKAN
ncnn::destroy_gpu_instance();
#endif // NCNN_VULKAN
print_topk(cls_scores, 3);
return 0;
}
4 参考
- https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-linux-x86
- https://github.com/Tencent/ncnn/wiki/ncnn
相关推荐
- Excel新函数TEXTSPLIT太强大了,轻松搞定数据拆分!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!最近我把WPS软件升级到了版本号:12.1.0.15990的最新版本,最版本已经支持文本拆分函数TEXTSPLIT了,并...
- Excel超强数据拆分函数TEXTSPLIT,从入门到精通!
-
我是【桃大喵学习记】,欢迎大家关注哟~,每天为你分享职场办公软件使用技巧干货!今天跟大家分享的是Excel超强数据拆分函数TEXTSPLIT,带你从入门到精通!TEXTSPLIT函数真是太强大了,轻松...
- 看完就会用的C++17特性总结(c++11常用新特性)
-
作者:taoklin,腾讯WXG后台开发一、简单特性1.namespace嵌套C++17使我们可以更加简洁使用命名空间:2.std::variant升级版的C语言Union在C++17之前,通...
- plsql字符串分割浅谈(plsql字符集设置)
-
工作之中遇到的小问题,在此抛出问题,并给出解决方法。一方面是为了给自己留下深刻印象,另一方面给遇到相似问题的同学一个解决思路。如若其中有写的不好或者不对的地方也请不加不吝赐教,集思广益,共同进步。遇到...
- javascript如何分割字符串(javascript切割字符串)
-
javascript如何分割字符串在JavaScript中,您可以使用字符串的`split()`方法来将一个字符串分割成一个数组。`split()`方法接收一个参数,这个参数指定了分割字符串的方式。如...
- TextSplit函数的使用方法(入门+进阶+高级共八种用法10个公式)
-
在Excel和WPS新增的几十个函数中,如果按实用性+功能性排名,textsplit排第二,无函数敢排第一。因为它不仅使用简单,而且解决了以前用超复杂公式才能搞定的难题。今天小编用10个公式,让你彻底...
- Python字符串split()方法使用技巧
-
在Python中,字符串操作可谓是基础且关键的技能,而今天咱们要重点攻克的“堡垒”——split()方法,它能将看似浑然一体的字符串,按照我们的需求进行拆分,极大地便利了数据处理与文本解析工作。基本语...
- go语言中字符串常用的系统函数(golang 字符串)
-
最近由于工作比较忙,视频有段时间没有更新了,在这里跟大家说声抱歉了,我尽快抽些时间整理下视频今天就发一篇关于go语言的基础知识吧!我这我工作中用到的一些常用函数,汇总出来分享给大家,希望对...
- 无规律文本拆分,这些函数你得会(没有分隔符没规律数据拆分)
-
今天文章来源于表格学员训练营群内答疑,混合文本拆分。其实拆分不难,只要规则明确就好办。就怕规则不清晰,或者规则太多。那真是,Oh,mygod.如上图所示进行拆分,文字表达实在是有点难,所以小熊变身灵...
- Python之文本解析:字符串格式化的逆操作?
-
引言前面的文章中,提到了关于Python中字符串中的相关操作,更多地涉及到了字符串的格式化,有些地方也称为字符串插值操作,本质上,就是把多个字符串拼接在一起,以固定的格式呈现。关于字符串的操作,其实还...
- 忘记【分列】吧,TEXTSPLIT拆分文本好用100倍
-
函数TEXTSPLIT的作用是:按分隔符将字符串拆分为行或列。仅ExcelM365版本可用。基本应用将A2单元格内容按逗号拆分。=TEXTSPLIT(A2,",")第二参数设置为逗号...
- Excel365版本新函数TEXTSPLIT,专攻文本拆分
-
Excel中字符串的处理,拆分和合并是比较常见的需求。合并,当前最好用的函数非TEXTJOIN不可。拆分,Office365于2022年3月更新了一个专业函数:TEXTSPLIT语法参数:【...
- 站长在线Python精讲使用正则表达式的split()方法分割字符串详解
-
欢迎你来到站长在线的站长学堂学习Python知识,本文学习的是《在Python中使用正则表达式的split()方法分割字符串详解》。使用正则表达式分割字符串在Python中使用正则表达式的split(...
- Java中字符串分割的方法(java字符串切割方法)
-
技术背景在Java编程中,经常需要对字符串进行分割操作,例如将一个包含多个信息的字符串按照特定的分隔符拆分成多个子字符串。常见的应用场景包括解析CSV文件、处理网络请求参数等。实现步骤1.使用Str...
- 因为一个函数strtok踩坑,我被老工程师无情嘲笑了
-
在用C/C++实现字符串切割中,strtok函数经常用到,其主要作用是按照给定的字符集分隔字符串,并返回各子字符串。但是实际上,可不止有strtok(),还有strtok、strtok_s、strto...
- 一周热门
- 最近发表
- 标签列表
-
- ps像素和厘米换算 (32)
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)