还有这操作?我用Python这个库竟然实现了隔空操作
itomcoil 2025-05-08 01:57 18 浏览
1.项目效果展示
项目主要分为四个部分,分别是
隔空音量控制
隔空绘画
隔空识别手势
隔空操作鼠标
下面是这四部分的演示效果
1.1:隔空音量控制
1.2:隔空绘画
1.3 :手势识别
1.4:鼠标模拟
2.所涉及到的库
上面这些应用的实现主要涉及到了两个库
OpenCv
MediaPipe
2.1:OpenCv简介
OpenCV是一个基于Apache2.0许可发行的跨平台计算机视觉与机器学习的软件库。
可以运行在多种操作系统,例如Linux,Window,Mac OS等等。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
2.2:MediaPipe简介
MediaPipe是一由Google开发并开源的数据流处理机器学习应用开发框架。
它是一个基于图的数据处理管线,用于构建使用了多种形式的数据源,如视频、音频、传感器数据以及任何时间序列数据。
MediaPipe是跨平台的,可以运行在多种操作系统,工作站和服务器上,并支持移动端GPU加速。
使用MediaPipe,可以将机器学习任务构建为一个图形的模块表示的数据流管道,包括推理模型和流媒体处理功能。
3.项目环境搭建
这些应用的环境方便比较简单,可以直接在pycharm里面进行安装对应的库即可使用。如果遇到库不能下载或者是超时,可以进行pip换源下载,本应用使用Python进行编写
4.源码部分
应用涉及到的源码比较多,这里就不一一进行贴出来了。
想要实践一下的同学可以私信我“666”获取哦!
下面是关键部分代码的一些截取内容。
cap = cv2.VideoCapture(0) #若使用外接摄像头 则更改为1或其他编号
cap.set(3, wCam)
cap.set(4, hCam)
pTime = 0
detector = handDetector()
success, img = cap.read()
img = detector.findHands(img)
lmList = detector.findPosition(img, draw=False)
pointList = [4, 8, 12, 16, 20]
if len(lmList) != 0:
countList = []
if lmList[4][1] > lmList[3][1]:
countList.append(1)
else:
countList.append(0)
for i in range(1, 5):
if lmList[pointList[i]][2] < lmList[pointList[i] - 2][2]:
countList.append(1)
else:
countList.append(0)
count = countList.count(1)
HandImage = cv2.imread(f'FingerImg/{count}.jpg')
HandImage = cv2.resize(HandImage, (150, 200))
h, w, c = HandImage.shape
img[0:h, 0:w] = HandImage
cv2.putText(img, f'{int(count)}', (15, 400), cv2.FONT_HERSHEY_PLAIN, 15, (255, 0, 255), 10)
原文:
https://blog.csdn.net/weixin_45574790/article/details/122505077?utm_medium=
distribute.pc_feed_blog_category.none-task-blog-classify_tag-5.nonecasedepth_1-utm_source=
distribute.pc_feed_blog_category.none-task-blog-classify_tag-5.nonecase
相关推荐
- 最强聚类模型,层次聚类 !!_层次聚类的优缺点
-
哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...
- python决策树用于分类和回归问题实际应用案例
-
决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...
- Python教程(四十五):推荐系统-个性化推荐算法
-
今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...
- 简单学Python——NumPy库7——排序和去重
-
NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...
- PyTorch实战:TorchVision目标检测模型微调完
-
PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...
- C4.5算法解释_简述c4.5算法的基本思想
-
C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...
- Python中的数据聚类及可视化分析实践
-
探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...
- 用Python来统计大乐透号码的概率分布
-
用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...
- python:支持向量机监督学习算法用于二分类和多分类问题示例
-
监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...
- 25个例子学会Pandas Groupby 操作
-
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...
- 数据挖掘流程_数据挖掘流程主要有哪些步骤
-
数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...
- 使用Python寻找图像最常见的颜色_python 以图找图
-
如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...
- 财务预算分析全网最佳实践:从每月分析到每天分析
-
原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...
- 常用数据工具去重方法_数据去重公式
-
在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...
- Python教程(四十):PyTorch深度学习-动态计算图
-
今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)