Python解决读取excel数据慢的问题
itomcoil 2025-05-10 22:33 17 浏览
前言:
在做自动化测试的时候,我思考了一个问题,就是如果我们的测试用例随着项目的推进越来越多时,我们做自动化回归的时间也就越来越长,其中影响自动化测试速度的一个原因就是测试用例的读取问题。用例越多,所消耗的读取用例时间也就越长,这样会消耗很多不必要的时间,所以接下来将介绍一下pandas中的pickle存储格式,pickle存储格式配合pandas的数据读取格式,极大程度上提高了数据速度,提高自动化测试的工作效率!
正文:
1、首先我们要准备一个excel,里面存放1048576行数据(这也是excel单个sheet的最大存储容量)。如果觉得准备这个数据很麻烦呢,也可以先准备一个小数据的excel文件,通过一个循环写入来创建这个大数据量的文件,下面提供思路代码:
import pandas as pd
"""利用pandas来读写数据"""
path = r"D:\software\pycharm\PythonApiHeaders\tools\new.xlsx"
# 读取数据
df = pd.read_excel(path, sheet_name="strategy")
result = []
i = 0
# 循环复制excel中的数据存放在result列表中
while i < 10:
i += 1
list1 = list(copy.deepcopy(df.values)) # 深拷贝
result += list1
print("result len is :", len(result))
# print(result[:1])
# 创建一个新的dataframe对象,取好列名
df = pd.DataFrame(result,
columns=["Case_id", "Checkpoints", "Child_checkpoint", "Priority", "title",
"Is_upload", "Method", "Url", "Headers", "Json",
"Data", "Params", "setup_sql", "Expected_results", "Extract_data",
"Actual_results", "assert_db", "Tester", "Test_result", "Type"
])
# 写入到excel中,指定好sheet名称
df.to_excel(path, index=False, sheet_name="strategy")
# 打印写入到excel的数据长度
print(len(result))
2、接着,我们来查看一下常规使用openpyxl读取excel数据的消耗时间:
import time
import pandas as pd
file_path = r"D:\software\pycharm\PythonApiHeaders\tools\new.xlsx"
print("read excel start!")
cl = HandleExcel(filename=file_path)
start = time.time()
result = cl.get_excel_test_cases(sheet_name="strategy")
cost = time.time() - start
print("read excel cost:", cost)
"""打印结果"""
read excel start!
read excel cost: 5.965034008026123
可以看出读取单个sheet,花费了近6s,如果我们还要读取多个模块的话,这个时间可以想象会消耗非常多的时间!
3、然后我们可以看一下读取pickle存储方式的数据消耗的时间。首先我们要准备一个pickle存储方式的文件!这个就很难了!其实也不难,利用pandas就可以一键转换啦,非常方便。
import time
import pandas as pd
file_path = r"D:\software\pycharm\PythonApiHeaders\tools\new.xlsx"
# 设置pandas读取excel对象
df = pd.read_excel(file_path)
# 输出pickle文件
df.to_pickle("new.pkl")
4、生成pickle文件之后,我们就可以读取pkl文件了,然后看一下读取时间:
import time
import pandas as pd
start = time.time()
df = pd.read_pickle("new.pkl")
cost2 = time.time() - start
print("read pkl cost:", cost2)
# 打印结果
read pkl cost: 0.06400060653686523
5、最后我们看一下读取pkl和读取excel消耗时间的对比:
print("excel / pkl:", cost / cost2)
# 打印结果
excel / pkl: 93.20277307981732
我们可以发现读取excel文件所消耗的时间是读取pkl文件的93倍!如果是读取多个sheet页的话,这个性能可能还会更高!
相关推荐
- 最强聚类模型,层次聚类 !!_层次聚类的优缺点
-
哈喽,我是小白~咱们今天聊聊层次聚类,这种聚类方法在后面的使用,也是非常频繁的~首先,聚类很好理解,聚类(Clustering)就是把一堆“东西”自动分组。这些“东西”可以是人、...
- python决策树用于分类和回归问题实际应用案例
-
决策树(DecisionTrees)通过树状结构进行决策,在每个节点上根据特征进行分支。用于分类和回归问题。实际应用案例:预测一个顾客是否会流失。决策树是一种基于树状结构的机器学习算法,用于解决分类...
- Python教程(四十五):推荐系统-个性化推荐算法
-
今日目标o理解推荐系统的基本概念和类型o掌握协同过滤算法(用户和物品)o学会基于内容的推荐方法o了解矩阵分解和深度学习推荐o掌握推荐系统评估和优化技术推荐系统概述推荐系统是信息过滤系统,用于...
- 简单学Python——NumPy库7——排序和去重
-
NumPy数组排序主要用sort方法,sort方法只能将数值按升充排列(可以用[::-1]的切片方式实现降序排序),并且不改变原数组。例如:importnumpyasnpa=np.array(...
- PyTorch实战:TorchVision目标检测模型微调完
-
PyTorch实战:TorchVision目标检测模型微调完整教程一、什么是微调(Finetuning)?微调(Finetuning)是指在已经预训练好的模型基础上,使用自己的数据对模型进行进一步训练...
- C4.5算法解释_简述c4.5算法的基本思想
-
C4.5算法是ID3算法的改进版,它在特征选择上采用了信息增益比来解决ID3算法对取值较多的特征有偏好的问题。C4.5算法也是一种用于决策树构建的算法,它同样基于信息熵的概念。C4.5算法的步骤如下:...
- Python中的数据聚类及可视化分析实践
-
探索如何通过聚类分析揭露糖尿病预测数据集的特征!我们将运用Python的强力工具,深入挖掘数据,以直观的可视化揭示不同特征间的关系。一同探索聚类分析在糖尿病预测中的实践!所有这些可视化都可以通过数据操...
- 用Python来统计大乐透号码的概率分布
-
用Python来统计大乐透号码的概率分布,可以按照以下步骤进行:导入所需的库:使用Python中的numpy库生成数字序列,使用matplotlib库生成概率分布图。读取大乐透历史数据:从网络上找到大...
- python:支持向量机监督学习算法用于二分类和多分类问题示例
-
监督学习-支持向量机(SVM)支持向量机(SupportVectorMachine,简称SVM)是一种常用的监督学习算法,用于解决分类和回归问题。SVM的目标是找到一个最优的超平面,将不同类别的...
- 25个例子学会Pandas Groupby 操作
-
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以...
- 数据挖掘流程_数据挖掘流程主要有哪些步骤
-
数据挖掘流程1.了解需求,确认目标说一下几点思考方法:做什么?目的是什么?目标是什么?为什么要做?有什么价值和意义?如何去做?完整解决方案是什么?2.获取数据pandas读取数据pd.read.c...
- 使用Python寻找图像最常见的颜色_python 以图找图
-
如果我们知道图像或对象最常见的是哪种颜色,那么可以解决图像处理中的几个用例,例如在农业领域,我们可能需要确定水果的成熟度。我们可以简单地检查一下水果的颜色是否在预定的范围内,看看它是成熟的,腐烂的,还...
- 财务预算分析全网最佳实践:从每月分析到每天分析
-
原文链接如下:「链接」掌握本文的方法,你就掌握了企业预算精细化分析的能力,全网首发。数据模拟稍微有点问题,不要在意数据细节,先看下最终效果。在编制财务预算或业务预算的过程中,通常预算的所有数据都是按月...
- 常用数据工具去重方法_数据去重公式
-
在数据处理中,去除重复数据是确保数据质量和分析准确性的关键步骤。特别是在处理多列数据时,保留唯一值组合能够有效清理数据集,避免冗余信息对分析结果的干扰。不同的工具和编程语言提供了多种方法来实现多列去重...
- Python教程(四十):PyTorch深度学习-动态计算图
-
今日目标o理解PyTorch的基本概念和动态计算图o掌握PyTorch张量操作和自动求导o学会构建神经网络模型o了解PyTorch的高级特性o掌握模型训练和部署PyTorch概述PyTorc...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)