一文读透,Python暴力(BF)字符串匹配算法到 KMP 算法之间的变化
itomcoil 2025-05-22 10:57 2 浏览
1. 字符串匹配算法
所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个模式字符串。如在字符串 " ABCDEFG " 中查找是否存在 “ EF ” 字符串。
可以把字符串 " ABCDEFG " 称为 原始(目标)字符串 ,“ EF ” 称为 子字符串 或 模式字符串 。
本文试图通过几种字符串匹配算法的算法差异性来探究字符串匹配算法的本质。
常见的字符串匹配算法:
- BF(Brute Force,暴力检索算法)
- RK (Robin-Karp 算法)
- KMP (D.E.Knuth、J.H.Morris、V.R.Pratt 算法)
2. BF(Brute Force,暴力检索)
BF 算法是一种原始、低级的穷举算法。
2.1 算法思想
下面使用长、短指针方案描述 BF 算法:
- 初始指针位置:长指针指向原始字符串的第一个字符位置、短指针指向模式字符串的第一个字符位置。这里引入一个辅助指针概念,其实可以不用。
- 辅助指针是长指针的替身,替长指针和短指针所在位置的字符比较。
- 每次初始化长指针位置时,让辅助指针和长指针指向同一个位置。
- 如果长、短指针位置的字符不相同,则长指针向右移动(短指针不动)。如果长、短指针所指位置的字符相同,则用辅助指针替代长指针(长指针位置暂不动)和短指针位置的字符比较,如果比较相同,则同时向右移动辅助指针和短指针。
- 如果辅助指针和短指针位置的字符不相同,则重新初始化长指针位置(向右移动),短指针恢复到最原始状态。
- 使用重复或者递归的方式重复上述流程,直到出口条件成立。
- 查找失败: 长指针到达了原始字符串的尾部。当 长指针位置=原始字符串长度 - 模式字符串长度+1 时就可以认定查找失败。
- 查找成功: 短指针到达模式字符串尾部。
2.2 编码实现
使用辅助指针:
# 原始字符串
src_str = "thismymyre"
# 长指针
sub_str = "myr"
# 长指针 :在原始字符串上移动
long_index = 0
# 短指针:在模式字符串上移动
short_index = 0
# 辅助指针
fu_index = long_index
# 原始字符串长度
str_len = len(src_str)
# 模式字符串的长度
sub_len = len(sub_str)
# 是否存在
is_exist = False
while long_index < str_len-sub_len+1:
# 把长指针的位值赋给辅助指针
fu_index = long_index
# 短指针初始为原始位置
short_index = 0
while short_index < sub_len and src_str[fu_index] == sub_str[short_index]:
# 辅助指针向右
fu_index += 1
# 短指针向右
short_index += 1
if short_index == sub_len:
is_exist = True
break
# 比较不成功,则长指针向右移动
long_index += 1
if not is_exist:
print("{0} 不存在于 {1} 字符串中".format(sub_str, src_str))
else:
print("{0} 存在于 {1} 的 {2} 位置".format(sub_str, src_str, long_index))
使用一个增量:
# 原始字符串
src_str = "thisismymyrdodmyrd"
# 子子符串
sub_str = "myrd"
# 长指针
long_index = 0
# 短指针
short_index = 0
# 原始字符串长度
str_len = len(src_str)
# 模式字符串的长度
sub_len = len(sub_str)
is_exist = False
while long_index < str_len:
i = 0
short_index = 0
while short_index < sub_len and src_str[long_index + i] == sub_str[short_index]:
i += 1
# 短指针向右
short_index += 1
if short_index == sub_len:
is_exist = True
break
long_index += 1
if not is_exist:
print("{0} 不存在于 {1} 字符串中".format(sub_str, src_str))
else:
print("{0} 存在于 {1} 的 {2} 位置".format(sub_str, src_str, long_index))
使用或不使用辅助指针的代码逻辑是一样。
在原始字符串和模式字符串齐头并进逐一比较时,最好不要修改长指针的位置,否则,在比较不成功的情况下,则修正长指针的逻辑就没有单纯的直接向右移动那么好理解。
如下直接使用长指针和短指针进行比较:
# 原始字符串
src_str = "thisismymyrdodmyrd"
# 子子符串
sub_str = "myrd"
# 长指针
long_index = 0
# 短指针
short_index = 0
# 原始字符串长度
str_len = len(src_str)
# 模式字符串的长度
sub_len = len(sub_str)
is_exist = False
while long_index < str_len:
short_index = 0
# 直接使用长指针和短指针位置相比较
while short_index < sub_len and src_str[long_index] == sub_str[short_index]:
long_index+=1
# 短指针向右
short_index += 1
if short_index == sub_len:
is_exist = True
break
# 修正长指针的位置
long_index = long_index-short_index+1
if not is_exist:
print("{0} 不存在于 {1} 字符串中".format(sub_str, src_str))
else:
print("{0} 存在于 {1} 的 {2} 位置".format(sub_str, src_str, long_index-short_index))
使用字符串切片实现:使用 Python 的切片实现起来更简单。但不利于初学者理解 BF 算法的细节。
# 原始字符串
src_str = "thisismymyrdodmyrd"
# 子子符串
sub_str = "myrd"
# 原始字符串长度
str_len = len(src_str)
# 模式字符串的长度
sub_len = len(sub_str)
is_exist = False
for index in range(str_len - sub_len + 1):
if src_str[index:index + sub_len] == sub_str:
is_exist = True
break
if not is_exist:
print("{0} 不存在于 {1} 字符串中".format(sub_str, src_str))
else:
print("{0} 存在于 {1} 的 {2} 位置".format(sub_str, src_str, index))
BF 算法的时间复杂度:
BF 算法直观,易于实现。但代码中有循环中嵌套循环的结构,这是典型的穷举结构。如果原始字符串的长度为 m ,模式字符串的长度为 n。时间复杂度则是 O(m*n),时间复杂度较高。
3. RK(Robin-Karp 算法)
RK算法 ( 指纹字符串查找) 在 BF 算法的基础上做了些改进,基本思路:
在模式字符串和原始字符串的字符准备开始逐一比较时,能不能通过一种算法,快速判断出本次比较是没有必要。
3.1 RK 的算法思想
- 选定一个哈希函数(可自定义)。
- 使用哈希函数计算模式字符串的哈希值。
- 如上计算 thia 的哈希值
- 再从原始字符串的开始比较位置起,截取一段和模式字符串长度一样的子串,也使用哈希函数计算哈希值。
- 如上计算 this 的哈希值
- 如果两次计算出来的哈希值不相同,则可判断两段模式字符串不相同,没有比较的必要。
- 如果两次计算的哈希值相同,因存在哈希冲突,还是需要使用 BF 算法进行逐一比较。
RK 算法使用哈希函数算法减少了比较次数。
3.2 编码实现:
# 原始字符串
src_str = "thisismymyrdodmyrd"
# 子子符串
sub_str = "myrd"
# 长指针
long_index = 0
# 短指针
short_index = 0
# 辅助指针
fu_index = 0
# 原始字符串长度
str_len = len(src_str)
# 模式字符串的长度
sub_len = len(sub_str)
is_exist = False
for long_index in range(str_len - sub_len + 1):
# 这里使用 python 内置的 hash 函数
if hash(sub_str) != hash(src_str[long_index:long_index + sub_len]):
# 哈希值一样就没有必要比较了
continue
# 把长指针的位置赋给辅助指针
fu_index = long_index
short_index = 0
while short_index < sub_len and src_str[fu_index] == sub_str[short_index]:
# 辅助指针向右
fu_index += 1
# 短指针向右
short_index += 1
if short_index == sub_len:
is_exist = True
break
if not is_exist:
print("{0} 不存在于 {1} 字符串中".format(sub_str, src_str))
else:
print("{0} 存在于 {1} 的 {2} 位置".format(sub_str, src_str, long_index))
RK 的时间复杂度:
RK 的代码结构和 BF 看起来一样,使用了循环嵌套。但内置循环只有当哈希值一样时才会执行,执行次数是模式字符串的长度。如果原始子符串长度为 m,模式字符串的长度为 n。则时间复杂度为 O(m+n),如果不考虑哈希冲突问题,时间复杂度为 O(m)。
很显然 RK 算法比 BF 算法要快很多。
4. KMP算法
算法的本质都是穷举,这是由计算机的思维方式决定的。我们在谈论"好"和“坏” 算法时,所谓好就是想办法让穷举的次数少一些。比如前面的 RK 算法,通过一些特性提前判断是否值得比较,这样可以省掉很多不必要的内循环。
KMP也是一样,也是尽可能减少比较的次数。
4.1 KMP 算法思路:
KMP的基本思路和 BF 是一样的(字符串逐一比较),BF 算法中,如果比较不成功,长指针每次只会向右移动一位。如下图:辅助指针和短指针对应位置字符不相同,说明比较失败。
长指针向右移一位,短指针恢复原始状态。重新逐一比较。
KMP算法对长、短指针的移位做了优化。
- 没有必要再使用辅助指针。
- 直接把长指针和短指针所在位置的字符逐一比较。
- 比较失败后,长指针位置不动。根据 KMP 算法中事先计算好的 “ 部分匹配表(PMT:Partial Match Table) ” 修改短指针的位置。
如上图比较失败后,长指针位置保持不变,只需要移动短指针。短指针具体移动哪里,由 PMT 表决定。上图灰色区域就是根据 PMT 表计算出来的可以不用再比较的字符。
在移动短指针之前,先要理解 KMP 算法中 的 " 部分匹配表(PMT) " 是怎么计算出来的。
先理解与 PMT 表有关系的 3 个概念:
- 前缀集合:
- 如: ABAB 的前缀(不包含字符串本身)集合 {A,AB,ABA}
- 后缀集合:
- 如: ABAB 中后缀(不包含字符串本身)集合 { BAB,AB,B }
- PMT值:前缀、后缀两个集合的交集元素中最长元素的长度。
- 如:先求 {A,AB,ABA} 和 { BAB,AB,B } 的交集,得到集合 {AB} ,再得到集合中最长元素的长度, 所以 ABAB 字符串的 PMT 值是 2 。
如前面图示,原始字符串和模式字符串逐一比较时,前 4 位即 ABAB 是相同的,而 ABAB 存在最大长度的前缀和后缀 ‘AB’ 子串。意味着下一次比较时,可以直接让 模式字符串的前缀 和原始字符串中 已经比较的字符串的后缀 对齐,公共部分不用再比较。
所以, KMP 算法的核心是得到 PMT 表,现使用手工方式计算 ABABCA 的 PMT 值:
- 当仅匹配第一个字符 A 时,A 没有前缀集合也没有后缀集合,所以 PMT[0]=0,短指针要移到模式字符串的 0 位置。
- 当仅匹配前二个字符 AB 时,AB的前缀集合{A},后缀集合是{B},没有交集,所以 PMT[1]=0,短指针要移到模式字符串的 0 位置。
- 当仅匹配前三个字符 ABA 时,ABA 的前缀集合{A,AB} ,后缀集合{BA,A},交集{A},所以 PMT[2]=1,短指针要移到模式字符串 1 的位置。
- 当仅匹配前四个字符 ABAB 时,ABAB 的前缀集合 {A ,AB,ABA },后缀集合{BAB,AB,B},交集{AB},所以 PMT[3]=2,短指针要移到模式字符串 2 的位置。
- 当仅匹配前五个字符 ABABC 时,ABABC 的前缀集合{ A,AB,ABA,ABAB },后缀集合{ C,BC,ABC,BABC },没有交集,所以PMT[4]=0,短指针要移到模式字符串的 0 位置。
- 当全部匹配后,ABABCA 的前缀是{A,AB,ABA,ABABC,ABABCA},后缀是{A,CA,BCA,ABCA,BABCA} 交集是{A},PMT[5]=1。
其实在 KMP 算法中,本没有直接使用 PMT 表,而是引入了next 数组的概念,next 数组中的值是 PMT 的值向右移动一位。
KMP算法实现:先不考虑 next 数组的算法,先以上面的手工计算值作为 KMP 算法的已知数据。
src_str = 'ABABABCAEF'
sub_str = 'ABABCA'
# next 数组,现在不着急讨论 next 数组如何编码实现,先用上面手工推演出来的结果
p_next = [-1, 0, 0, 1, 2, 0]
# long_index 指向原始字符的第一个位置
long_index = 0
# short_index 指向模式字符串的第一个
short_index = 0
# 原始字符串的长度
src_str_len = len(src_str)
# 模式字符串的长度
sub_str_len = len(sub_str)
# 保存长指针、短指针位置有效 当长指针越界时,说明查找失败,当短指针越界,说明查找成功
while long_index < src_str_len and short_index < sub_str_len:
# 理论上 当长指针和短指针所在位置的字符相同时,长、短指针向右移动
# 如果长指针和短指针所在位置的字符不相同时,这里 -1 就起到神奇的作用,长指针可以前进,短指针会变成 0 。
# 下次比较时,如果还是不相同 short_index 又变回 -1, 长指针又可以前进,短指针还是指向 0 位置
if short_index == -1 or src_str[long_index] == sub_str[short_index]:
long_index += 1
short_index += 1
else:
short_index = p_next[short_index]
if short_index == sub_str_len:
print(long_index - short_index)
上面的代码是没有通用性的,因为 next 数组的值是固定的,现在实现求解 netxt 数组的算法:
求 next 也可以认为是一个字符串匹配过程,只是原始字符串和模式字符串都是同一个字符串,因第一个字符没有前缀也没有后缀,所以从第二个字符开始。
# 求解 next 的算法
def getNext(p):
i, j = 0, -1
m = len(p)
pnext = [-1] * m
while i < m - 1:
if j == -1 or p[i] == p[j]:
i += 1
j += 1
pnext[i] = j
else:
j = pnext[j]
return pnext
KMP算法的时间复杂度为 O(m+n)
5. 总结
字符串匹配算法除了上述几种外,还有 Sunday算法、Sunday算法。从暴力算法开始,其它算法可以尽可能减少比较的次数。加快算法的速度。
原文参考:
https://www.cnblogs.com/guo-ke/p/16056222.html
相关推荐
- 使用opencv-Python进行图像锐化处理
-
使用OpenCV函数cv::filter2D执行一些拉普拉斯滤波以进行图像锐化使用OpenCV函数cv::distanceTransform以获得二值图像的派生(derived)表示,...
- Python-OpenCV 7. 图像二值化
-
一、介绍图像二值化(ImageBinarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。在数字图像处理中,二值图像占有非常重要的地位,图...
- OpenCV+Python裁剪图像
-
最近使用OpenCV+Python做了一个程序,功能是自动将照片中的文本部分找出来并裁剪/旋转保存为新的图片。这个功能用专业些的说法就是选择并提取感兴趣区域(ROI(RegionofInteres...
- 简单易懂的人脸识别!用PythonOpenCV实现(适合初...
-
前言:OpenCV是一个开源的计算机视觉和机器学习库。它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包。根据这个项目的关于页面,OpenCV已被广泛运用在各种项目上,从谷歌街景...
- OpenCV行人检测应用方案--基于米尔全志T527开发板
-
本文将介绍基于米尔电子MYD-LT527开发板(米尔基于全志T527开发板)的OpenCV行人检测方案测试。摘自优秀创作者-小火苗一、软件环境安装1.在全志T527开发板安装OpenCVsudoap...
- 纯Python构建Web应用:Remi与 OpenCV 结合实现图像处理与展示
-
引言大家好,我是ICodeWR。在前几篇文章中,我们介绍了Remi的基础功能、多页面应用、动态更新、与Flask结合、与数据库结合、与Matplotlib结合以及与Pandas结合。...
- 【AI实战项目】基于OpenCV的“颜色识别项目”完整操作过程
-
OpenCV是一个广受欢迎且极为流行的计算机视觉库,它因其强大的功能、灵活性和开源特性而在开发者和研究者中备受青睐。学习OpenCV主要就是学习里面的计算机视觉算法。要学习这些算法的原理,知道它们适用...
- Python自动化操控术:PyAutoGUI全场景实战指南
-
一、PyAutoGUI核心武器库解析1.1鼠标操控三剑客importpyautogui#绝对坐标移动(闪电速度)pyautogui.moveTo(100,200,duration=0....
- 从零开始学python爬虫(七):selenium自动化测试框架的介绍
-
本节主要学习selenium自动化测试框架在爬虫中的应用,selenium能够大幅降低爬虫的编写难度,但是也同样会大幅降低爬虫的爬取速度。在逼不得已的情况下我们可以使用selenium进行爬虫的编写。...
- 「干货分享」推荐5个可以让你事半功倍的Python自动化脚本
-
作者:俊欣来源:关于数据分析与可视化相信大家都听说自动化流水线、自动化办公等专业术语,在尽量少的人工干预的情况下,机器就可以根据固定的程序指令来完成任务,大大提高了工作效率。今天小编来为大家介绍几个P...
- python+selenium+pytesseract识别图片验证码
-
一、selenium截取验证码#私信小编01即可获取大量Python学习资源#私信小编01即可获取大量Python学习资源#私信小编01即可获取大量Python学习资源importjso...
- Python爬虫实战 | 利用多线程爬取 LOL 高清壁纸
-
一、背景介绍随着移动端的普及出现了很多的移动APP,应用软件也随之流行起来。最近看到英雄联盟的手游上线了,感觉还行,PC端英雄联盟可谓是爆火的游戏,不知道移动端的英雄联盟前途如何,那今天我们使用到...
- 一套真实的Python面试题,几十个题目汇总
-
1.(1)python下多线程的限制以及多进程中传递参数的方式python多线程有个全局解释器锁(globalinterpreterlock),这个锁的意思是任一时间只能有一个线程使用解释器,跟...
- 一文读透,Python暴力(BF)字符串匹配算法到 KMP 算法之间的变化
-
1.字符串匹配算法所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个模式字符串。如在字符串"ABCDEFG"中查找是否存在“EF”字符串。可以把字符...
- Python实现屏幕自动截图
-
教程目录需要实现的功能:自动屏幕截图具体需求:1.支持设置截图频率和截图文件存储路径2.在存储截图时判断与前一张截图的相似度,只有屏幕发生了显著的变化才存储截图所需技术(搜索关键词):1.屏幕截...
- 一周热门
- 最近发表
- 标签列表
-
- ps图案在哪里 (33)
- super().__init__ (33)
- python 获取日期 (34)
- 0xa (36)
- super().__init__()详解 (33)
- python安装包在哪里找 (33)
- linux查看python版本信息 (35)
- python怎么改成中文 (35)
- php文件怎么在浏览器运行 (33)
- eval在python中的意思 (33)
- python安装opencv库 (35)
- python div (34)
- sticky css (33)
- python中random.randint()函数 (34)
- python去掉字符串中的指定字符 (33)
- python入门经典100题 (34)
- anaconda安装路径 (34)
- yield和return的区别 (33)
- 1到10的阶乘之和是多少 (35)
- python安装sklearn库 (33)
- dom和bom区别 (33)
- js 替换指定位置的字符 (33)
- python判断元素是否存在 (33)
- sorted key (33)
- shutil.copy() (33)